Closed Expressions for Finite Transformations

Daniel Lee Wenger

We find a solution to the following simple problem. Given an n x n matrix $\boldsymbol{\theta}$

$$
\theta=\left(\begin{array}{ccccc}
\theta_{11} & \theta_{12} & \theta_{13} & \cdot & \theta_{1 n} \tag{1}\\
\theta_{21} & \theta_{22} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\theta_{n 1} & \cdot & \cdot & \cdot & \theta_{n n}
\end{array}\right)
$$

where the $\theta_{i j}$ are complex numbers and where θ is diagonalizable, then find a closed expression for the exponentiated form $\mu=e^{i \theta}$ where

$$
\begin{equation*}
\mu=e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\ldots \tag{2}
\end{equation*}
$$

By the Cayley-Hamilton theorm, the nx n matrix $\boldsymbol{\theta}$ satisfies an $\mathrm{n}^{\text {th }}$ degree polynomial equation. Consequently, μ may be expressed in terms of a power series of degree $n-1$ in θ

$$
\begin{equation*}
\mu=\sum_{i=0}^{n-1} a_{i} \theta^{i} \tag{3}
\end{equation*}
$$

The a_{i} are functions of the invariants of $\boldsymbol{\theta}$ and the problem is to find these functions.

Now define the quantity

$$
\begin{equation*}
T_{i} \equiv \operatorname{tr}\left(\mu \theta^{i}\right) \tag{4}
\end{equation*}
$$

The trace is invarient under the transformation that diagonalizes θ and μ. Let the diagonal form of $\boldsymbol{\theta}$ be $\overline{\boldsymbol{\theta}}$ and the diagonal form of $\boldsymbol{\mu}$ be $\overline{\boldsymbol{\mu}}$, then

$$
\begin{equation*}
T_{i}=\operatorname{tr}\left(\bar{\mu} \bar{\theta}^{i}\right) \tag{5}
\end{equation*}
$$

Also, using (3) and (4) we have

$$
\begin{equation*}
T_{i}=\sum_{j=0}^{n-1} a_{j} t r\left(\theta^{i+j}\right)=\sum_{j=0}^{n-1} a_{j} \operatorname{tr}\left(\bar{\theta}^{i+j}\right) \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{i j} \equiv \operatorname{tr}\left(\bar{\theta}^{i+j}\right) \quad i, j=0,1,2 \ldots n-1 \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
T_{i}=\sum_{j=0}^{n-1} A_{i j} a_{j} \quad i=0,1,2 \ldots n-1 \tag{8}
\end{equation*}
$$

is a linear system of equations for a_{j}. Assuming that the determinant $|A| \neq 0$, the inverse to A exists and we have

$$
\begin{equation*}
a_{i}=\sum_{j=0}^{n-1} A_{i j}^{-1} T_{j} \tag{9}
\end{equation*}
$$

As an example we find the 2×2 representation of $\mathrm{SU}_{2} . \boldsymbol{\theta}$ is hermitian and traceless. Consequently, $\overline{\boldsymbol{\theta}}$ has the form

$$
\bar{\theta}=\left(\begin{array}{cc}
\phi / 2 & 0 \tag{10}\\
0 & -\phi / 2
\end{array}\right)
$$

where ϕ is real, $\bar{\mu}$ has the form

$$
\bar{\mu}=\left(\begin{array}{cc}
e^{i \phi / 2} & 0 \tag{11}\\
0 & e^{-i \phi / 2}
\end{array}\right)
$$

Computing T_{i} and $A_{i j}$ we get

$$
\begin{gather*}
T_{0}=2 \cos \frac{\phi}{2} \quad T_{1}=\frac{\phi}{2} \sin \frac{\phi}{2} \tag{12}\\
A=\left(\begin{array}{cc}
2 & 0 \\
0 & \phi^{2} / 2
\end{array}\right) \tag{13}
\end{gather*}
$$

Inverting A we get

$$
A^{-1}=\left(\begin{array}{cc}
1 / 2 & 0 \tag{14}\\
0 & 2 / \phi^{2}
\end{array}\right)
$$

and solving for a_{i} from (9)

$$
\begin{equation*}
a_{0}=\cos \frac{\phi}{2} \quad a_{1}=\frac{i}{\phi / 2} \sin \frac{\phi}{2} \tag{15}
\end{equation*}
$$

we arrive at the familiar form

$$
\begin{equation*}
e^{i \theta}=\cos \frac{\phi}{2}+\frac{i}{\phi / 2} \sin \frac{\phi}{2} \theta \tag{16}
\end{equation*}
$$

where ϕ is the angle of rotation.

