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Abstract

Several models  of multiple particle scattering in homogeneous matter are treated as
random walks and analyzed with techniques of multi-variate probability theory.

The time is treated as a random variable equivalently to the space variables. This
approach is in contrast to that of treating the time as a parameter as is done in the special
theory of stochastic processes.

The transition of the time variable from a probability to a conditional variable is
associated with a transition from Markovian to non-Markovian processes.

For exponentially distributed times of flight, exact spatial probability density functions
and fluxes, conditional upon the time, are obtained for the cases of constant speed
isotropic scattering in one and two dimensions.

Mathematically, the models may be considered as a mixture of random walk and renewal
processes.
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(1)

The mathematical theory of random walk processes dates from 1905 when Pearson posed
the problem of determining the probability density of a particle, actually an inebriate,
undergoing displacements of equal length in random directions.

The names of Rayleigh and Kluyver are associated with early solutions to this problem

[1].

Markov expressed a general procedure for treating such problems. The method, which
bears his name, has been generalized by Chandrasekhar[1] , and will be used here in a
somewhat different form.

To develop familiarity with the methods used here, consider the following process.

A particle, starting at the origin at t = 0, undergoes a collision after a time t0 . The time t0

is taken to be a random variable described by a probability density ρ t0( ). In this paper we

restrict ourselves to the exponential density function.

ρ σ σt e tvt
0 0

0 0( ) = ≤− (1.1)

Here ν  is the speed of the particle and σ  is a microscopic scattering cross-section, or,
inverse mean free path

As a density function, ρ t0( ) satisfies

dt t t00 0 01 0
∞

∫ ( ) = ≤ ( )ρ ρ (1.2)

After the collision, the particle moves off in a new direction and undergoes a second
collision after a time t1 . t1 , as well, is described by (1.1).

Continuing in this way, there are, after n  collision, n + 1 random variables
t i ni ; , ,= ⋅ ⋅⋅0 1 . Note that the counting convention used here counts the number of

collisions prior to the last collision.

The total elapsed time t  after n  collisions is

t t t tn= + + ⋅ ⋅ ⋅ +0 1 (1.3)

a random variable which is a function of the n + 1 statistically independent random
variables ti ,
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The probability density for t , conditional upon n  collisions having occurred is

ρ ρ ρ ρt n dt dt dt t t t
R

n n|( ) = ⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( )∫ ∫ ∫0 1 0 1 (1.4)

where the region of integration R is the surface in n + 1 dimensional space defined by
equation (1.3).

Using the Dirac delta function, (1.4) may be expressed as

ρ ρ ρ ρ δt n dt dt dt t t t t tn n j
j

n

|( ) = ⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( ) −






∞ ∞ ∞

=
∫ ∫ ∫ ∑00 10 0 0 1

0

(1.5)

where now the range of integration is over the entire domain of the variables ti .

To evaluate (1.5), the delta function is expressed as an inverse Fourier transform.

δ
π

t t dk ej
j

n

t

ik t tt j
j

n

−






=

∑

=
−∞

∞ −










∑ ∫ =

0

1
2

0 (1.6)

Substitution of (1.6) into (1.5), a change in the order of integration and the fact that the
ρ ti( ) are all the same, yields

ρ
π

ρt n dk e dt t et
ik ik t

n
t t|( ) = ( )[ ]−∞

∞ −∞ +

∫ ∫1
2 0 00

1
0 (1.7)

Substitution of (1.1) and evaluation of the integral over t0  gives

ρ
π

σν
σν

t n dk e
ikt

ik t

t

n

t|( ) =
+









−∞

∞
+

∫1
2

0

1

(1.8)

(1.8) is evaluated by the method of residues using a contour enclosing the upper half
plane including the pole at k it = σν . The result is

ρ σν σν

ρ

σνt n
t

n
e t

t n t

n
t|

!
|

( ) = ( ) ≤

( ) = ≤

− 0

0 0

(1.9)

(1.9) may be integrated to show that ρ t n|( ) is normalized.

ρ t n|( ) =
∞

∫0
1 (1.10)
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The method followed here is essentially the Markov method for evaluating the density
function of a sum of random variables [1].

(2)

We turn now to the study of a scattering model in one dimension. Consider a particle that
moves along the x  axis and undergoes scatters that reverse the particles direction without

changing it's speed. The particle starts, say, at the origin moving in the positive x
direction.

After n  collisions the x coordinate of the particle is

x vt vt vt vt v vtn
n

j
j

j

n

= − + − ⋅ ⋅ ⋅ + −( ) = −( )
=
∑0 1 2

0

1 1 (2.1)

Using the methods of section (1), the joint probability density for x  and t  conditional

upon n  collisions having occurred, is

ρ ρ ρ δ δ+

∞ ∞

= =
( ) = ⋅ ⋅ ⋅ ( ) ⋅ ⋅ ⋅ ( ) −







− −( )






∫ ∫ ∑ ∑x t n dt dt t t t t x v tn n j
j

n
j

j
j

n

, | 00 0 0
0 0

1 (2.2)

where the + subscript indicates that the particle started in the positive direction.

The product of delta functions is a natural expression of multiple constraints and gives
results in agreement with standard methods of constrained integrations [2].

Using (1.6) and

δ
π

x v t dk ej
j

j

n

x

ik x v tx
j

j
j

n

− −( )






=

=

− −( )∑






−∞

∞

∑ ∫ =1
1

20

1
0 (2.3)

we have, after a change in order of integration, grouping of similar integrals and
evaluation of the integrals over ti ,

ρ
π

σν
σν σν+ −∞

∞

−∞

∞
+

( ) =
( ) + +( ) + −( )













∫ ∫x t n dk e dk e
ik ivk ik ivk

t
ik t

x
ik x

t x

p

t x

q

n

t x, |
1

2 2

1

(2.4)

Here p q n+ = + 1 and p q=  or p q= + 1. p  is the number of translations in the +x

direction, q  is the number in the −x  direction.

New variables are defined implicitly by the equations
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k
v

k k

k k k

t

x

= +( )

= −( )

+ −

+ −

σ

σ
2

2

(2.5)

The Jacobian of the transformation is 
σ 2

2
v

. The effect of the change in variable is to

separate the integrand, giving

ρ σ
π

σ σ

x t n
v

dk
e

ik
dk

e

ik

ik vt x

p

ik vt x

q, |
/ /

( ) =
+( ) +( )+−∞

∞ +( )

+
−−∞

∞ −( )

−
∫ ∫

+ −2

2

2 2

8 1 1
(2.6)

(2.6) is evaluated, as before, by the method of residues.

For n = 0 , that is, before a collision occurs, p = 1, q = 0 , and

ρ σ δσx t ve vt x tvt, | 0 0( ) = −( ) ≤− (2.7)

For n > 0,

ρ σ σ

ρ

σ
+

−
− −

+

( ) = 





+( )
−( )

−( )
−( )

( ) = <
− ≤ ≤ ≤

x t n ve
vt x

p

vt x

q

x t n vt x

vt x vt t

vt
n p q

, |
! !

, |

2 1 1

0

0

1 1

(2.8)

(2.8) may be expressed, for n  even, as

ρ σ σ σσ
+

−
−

( ) = 



 +( ) ( )







−





x t n
v

e vt x
s

n n
vt

n

, |
/

! !

2 2

2 2
2

2
2

2

(2.9)

and for nodd, as

ρ σ σσ
+

−
−

( ) = ( )






−





= ( ) −

x t n
v

e
s

n n

s vt x

vt
n

, |
/

! !

2 1

2 2

2
2

2
2

2 (2.10)

It is seen from (2.7) that the density for the particle before a collision occurs is an
exponentially damped delta function centered at the position of the particle as it moves in
the positive x direction.
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From (2.8), one sees that after a collision the particle might be found anywhere between
− ≤ ≤vt x vt , but with greater probability near the origin.

Integrating (2.8) over x recaptures (1.9).

dx x t n v
vt

n
e t n

n

vt

vt
vtρ σ σ ρσ

+−

−( ) = ( ) = ( )∫ , |
!

| (2.11)

(Note that the integral over x for ρ+ ( )x t, | 0  has limits of integration ±∞, since x is only

restricted by the delta function, thus, the point x vt=  is always included).

(3)

The question now arises, may we somehow determine a probability density for x in
which contributions from every n occur.

Until now, we have been considering continuous Markov series in the variable x and t, or
alternatively, a discrete Markovian process in the variable n [3]. This is seen by
expressing the density for n + 1scatters in terms of the density for nscatters, and
recognizing therein the Schmoluchowski-Chapman-Kolmogorov equation. ( This actually

identifies the process as a member of a slightly larger set of processes including the
exceptional non-Markovian processes that satisfy the S-C-K equation [3].

ρ ρ δ δx t n dx dt dx dt x t t t t x x x, | +( ) = ′ ′ ( ) − − ′( ) − − ′( )∫1 0 0 0 0 0 0 (3.1)

This equation will be discussed in section (13).

The operations of this section will destroy the Markovian property and render the

processes non-Markovian.

To proceed, form the conditional probability density ρ x t n| ,( )

ρ ρ
ρ

ρx t n
x t n

t n
t n| ,

, |
|

|( ) = ( )
( )

( ) ≠ 0 (3.2)

Consider as well the probability P n t|( ), the probability of n scatters given the time t. The

probability density ρ x n t, |( ) is given in terms of these new quantities by

ρ ρ ρ
ρ

x n t x t n P n t
x t n P n t

t n
, | | , |

, | |
|

( ) = ( ) ( ) = ( ) ( )
( )

(3.3)

ρ x n t, |( ) is a mixture of a density in x and a distribution in n.



Daniel L. Wenger/Random Walks in Space and Time

-8-

We now evaluate P n t|( ). Consider the space of events labeled by a particular ordered set

of numbers t t t tn0 1, , , ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )∞  where the ti  satisfy the condition t ti
i=

∞

∑ =
0

. The ti  are

weighted by the function ρ ti( ).

The probability P n t|( ) is given by the ratio of the number of events in the subspace of

events defined by t t t t t t tn n n0 1 1 2 0+ + + = =+ + ∞L L, ,  to the total number of events in

the space of events. The events common to more than one subspace cause no problem
since they are of measure zero.

P n t|( ) is thus given by

P n t
dt dt dt t t t t t t t

dt dt dt t t t t t t t

n n n

j j j
j

|( ) =
⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( ) − − ⋅ ⋅ ⋅ −( )

⋅ ⋅ ⋅ ( ) ( ) ⋅ ⋅ ⋅ ( ) − − −( )

∞∞∞

∞∞∞

=

∞
∫∫∫
∫∫∫∑

0 1 0 1 0 1000

0 1 0 1 0 1000
0

ρ ρ ρ δ

ρ ρ ρ δ L
(3.4)

or,

P n t
t n

t j
j

|
|

|
( ) = ( )

( )
=

∞

∑
ρ

ρ
0

(3.5)

where ρ t n|( ) is the probability density for a sum of n + 1 random variables with density

ρ ti( ).

Substituting this result into (3.3) gives

ρ ρ

ρ
x n t

x t n

t j
j

, |
, |

|
( ) = ( )

( )
=

∞

∑
0

(3.6)

Now sum over n to find

ρ ρ
ρ

ρ
x t x n t

x t n

t jn

n

j

| , |
, |

|
( ) = ( ) =

( )

( )=

∞
=

∞

=

∞∑
∑

∑0

0

0

(3.7)

This is a general result independent of the particular form of the densities. The only
difficulty arises when the sum in the denominator of (3.5) is not finite.
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For Exponentially distributed times of flight, ρ t n|( ), as given by (1.9), has the property

that

ρ σt n v
n

|( ) =
=

∞

∑
0

(3.8)

consequently,

ρ
σ

ρx n t
v

x t n, | , |( ) = ( )1
(3.9)

and the probability density for x conditional upon t is

ρ
σ

ρx t
v

x t n
n

| , |( ) = ( )
=

∞

∑1

0

(3.10)

P n t|( ) is recognized as the Poisson distribution. The expected value of n, conditional

upon t, is given by

n t nP n t vt
n

| |= ( ) =
=

∞

∑
0

σ (3.11)

The expected value of n is thus proportional to t, a result in contrast to the approach of
taking n proportional to t as was often done in early random walks.

A word here is appropriate regarding the historical development of probability theory.
Many results are available with respect to the properties of chained processes and in
particular of Markov chains.

In relating these processes to physical processes, it has been common to make the
assumption that temporal development is given by the chain number. The primary
consequence is that the processes continue to be Markovian in the continuous variable t.

Here, another notion of temporal development is indicated by equation (3.6). These
processes are in general non-Markovian.

The pseudo-Poisson process [3] is a special case of (3.6) and is characterized by

ρ ρ ρx t n x n t n, | | |( ) = ( ) ( ) (3.12)

Here ρ t n|( ) is given by (1.9) and statistical independence of x and t is explicitly

indicated.
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(4)

We now use the results (2.7) and (2.8) for one dimensional back-scatter and formula
(3.10) to derive a probability density for x, conditional upon t, and in which contributions
from all n occur, namely

ρ δ σσ
+

−
− −

=

∞

( ) = −( ) + ( ) +( )
−( )

−( )
−( )









− ≤ ≤ ≤

∑x t n e vt x
vt x

p

vt x

q

vt x vt t

vt n
p q

n

, | /
! !

2
1 1

0

1 1

1 (4.1)

where p q n+ = + 1 and p q=  or p q= + 1.

By grouping odd and even terms, (4.1) takes the form

ρ δ σ σ σ σσ
+

−

=

∞

=

∞

( ) = −( ) + ( ) + +( ) ( )
+( )









= ( ) − − ≤ ≤ ≤

∑ ∑x t e vt x
s

k
vt x

s

k k

s vt x vt x vt t

vt
k

k

k

k

|
/
!

/
! !2

2
4

2
1

0

2

2
0

2 2

0

2 2

(4.2)

The two series in (4.2) are identified as modified Bessel functions [4], giving the result,

ρ δ σ σ σ σσ
+

−( ) = −( ) + ( ) + +( ) ( )







= ( ) − − ≤ ≤ ≤

x t e vt x I s
vt x

s
I s

s vt x vt x vt t

vt|
2 2

0

0 1

2 2

(4.3)

With the substitution s vt= sinθ , x vt= cosθ , (4.2) may be integrated to show

dx x t
vt

vt
ρ+−

( ) =∫ | 1 (4.4)

The above probability density is that for a particle starting in the +x  direction. The
density ρ−( )x t|  for a particle starting in the −x  direction is

ρ ρ− +( ) = −( )x t x t| | (4.5)

The density for a particle starting isotropically is

ρ ρ ρiso x t x t x t| | |( ) = ( ) + ( )− +
1
2

1
2

(4.6)

or,
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ρ δ δ σ σ σ σσ
iso

vtx t e vt x vt x I s
vt

s
I s|( ) = −( ) + +( ) + ( ) + ( )


−1

2 0 1 (4.7)

Here σ  is the cross-section for back-scatter.

(5)

We now treat the one dimensional isotropic scattering problem. In this mode, the particle,
after each scatter, is found, with equal probability, to be moving in the +x  or the −x
direction.

In the previous case, there were n + 1 independent random variables t i ni ; , , ,= ⋅ ⋅ ⋅0 1 2 .

Here an additional n + 1 random variables are introduced, namely, x i ni ; , , ,= ⋅ ⋅ ⋅0 1 2 . xi  is

the displacement between the ith collision and the (i+1)th collision.

We are interested in the two dependent variables

t t t tn= + + ⋅ ⋅ ⋅0 1 (5.1)

and

x x x xn= + + ⋅ ⋅ ⋅0 1 (5.2)

But now, xi  and ti  are not statistically independent and the joint probability density for xi

and ti  is introduced. We choose

ρ σ δ δσx t ve vt x vt xi i
vt

i i i i
i,( ) = −( ) + +( )


− 1

2
1
2

(5.3)

Integrating (5.3) over xi  returns the exponential density for ti .

dx x t ve ti i i
vt

i
iρ σ ρσ,( ) = = ( )

−∞

∞ −∫ (5.4)

Here σ  is the total isotropic scattering cross-section.

Using the techniques of section (2), ρ x t n, |( ) is given by

ρ
π

ρx t n dk e dk e dt dx e x tt
ik t

x
ik x

i i
i k t k x

i i

n
t x t i x i, | ,( ) =

( ) ( )[ ]−∞

∞

−∞

∞ ∞

−∞

∞ − +( )
+

∫ ∫ ∫ ∫1
2 2 0

1

(5.5)

or
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ρ
π

σ σ
σ

x t n dk e dk e
v v ik

v ik k v
t

ik t
x

ik x t

t x

n

t x, |( ) =
( )

+( )
+( ) + ( )











−∞

∞

−∞

∞
+

∫ ∫1
2 2 2 2

1

(5.6)

The change of variable (2.5) leads to

ρ σ
π

σ σx t n
v

dk dk e e
ik ik

ik ik
ik vt x ik vt x

n

, | / /( ) =
( )

+( ) + +( )
+( ) +( )









+−∞

∞

−−∞

∞ +( ) −( ) + −

+ −

+

∫ ∫ + −

2

2
2 2

1

2
1

2

1 1

2 1 1
(5.7)

Expansion of the numerator in a binomial series provides a separation of variables and
the integrations are then performed as in (2.6). The result is, for n = 0 ,

ρ σ δ δσx t
v

e vt x vt xvt, | 0
2

( ) = −( ) + +( ){ }− (5.8)

and for n > 0,

ρ σ σ δ δ

σ σ

σ

σ

x t n
v vt

n
e vt x vt x

v
e

n

j
vt x

n j

vt x

j

vt x vt t

n
vt

n
vt

n j j

j

n

, |
/
!

! !

( ) = ( ) −( ) + +( ){ }

+ 





+





−( )
−( )

+( )
−( )

− ≤ ≤ ≤

−

−
− −

=
∑

2
2

2 4

1

1

0

1

1

(5.9)

(5.8) is the unscattered portion of the density, composed of a part representing the particle

moving in the +x  direction and a part representing the particle moving in the −x
direction, both parts decaying exponentially with time.

(5.9) represents the particle after it has undergone n collisions. The delta function portion
is the forward scattered component of the density.

Making use of formula (3.10), ρ x t|( ) takes the form

ρ δ δ

σ

σ

σ

x t e vt x vt x

e
n

j
vt x

n j

vt x

j

vt

vt
n

n

n j j

j

n

|

! !

( ) = −( ) + +( ){ }

+ 





+





−( )
−( )

+( )
−( )

−

−

=

∞ − −

=
∑ ∑

1
2

1
2 4

1

11

1

1

(5.10)

Now label the cross-section occurring in (5.10) as σ iso  for isotropic scattering, and

introduce σ b, the cross-section for back scattering, by

σ σb iso= 1
2

(5.11)
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(4.7) and (5.10) may now be used to establish an interesting identity. There is but one
fundamental process, with two equivalent descriptions. One is that if a collision occurs
with probability σ b, a scatter occurs in the reverse direction with probability 1. The other

view is that given a collision with a probability σ iso , the probability of back scatter is 1/2.

The delta function terms are clearly equivalent. Equating the remaining portions of (4.7)
and (5.10), the following identity is found.

n

n j j

j

n
a b

k k

kk

a b

n

j
a

n j

b

j
e

ab

k k

a b ab

k k

e I ab
a b

ab
I ab

=

∞ − −

=

+

=

∞

=

∞

+

∑ ∑ ∑∑
+





( )
−( )

( )
−( ) = ( ) + +( )( )

+( )








= ( ) + + ( )


1

1

1 00

0 1

1

1
2

1

2 2 2

! ! ! ! ! !






(5.12)

where a and b are arbitrary complex numbers.

The final result for ρ x t|( ) for one dimensional isotropic scattering is

ρ δ δ σ σ σ σσx t e vt x vt x I s
vt

s
I s

s vt x vt x vt t

vt| / //( ) = −( ) + +( ) + ( ) + ( )


= ( ) − − ≤ ≤ ≤

−1
2 2

2
2

2

0

2
0 1

2 2

(5.13)

where σ  is the cross-section for isotropic scattering.

(6)

We now consider a two dimensional scattering process. The particle is constrained to
move in the two dimensional plane and undergoes isotropic scattering at each collision.
The dependent random variables of interest are

t t t t

x x x x

y y y y

n

n

n

= + + ⋅ ⋅ ⋅ +
= + + ⋅ ⋅ ⋅ +
= + + ⋅ ⋅ ⋅ +

0 1

0 1

0 1

(6.1)

The three variables t x yi i i, ,  are statistically interdependent. This is expressed via the joint

probability density

ρ σ
π

δ
σ

x y t
e

t
vt x yi i i

vt

i
i i i

i

, ,( ) = − +( )
−

2
2 2 (6.2)

σ  is the total isotropic scattering cross-section.
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(6.2) has the property of returning the exponential density for ti  when integrated over xi

and yi .

The density for the three variables of (6.1) is

ρ
π

ρ
ε

x y t n dk e dk e dk e

dt e dx e dy e x y t

t
ik t

x
ik x

y
ik y

i
ik t

i
ik x

i
ik y

i i i

n

t x y

t i x i y i

, , |

, ,

( ) =
( )

⋅ ( )[ ]
−∞

∞

−∞

∞

−∞

∞

− −

−∞

∞ −

−∞

∞∞ +

∫ ∫ ∫

∫ ∫∫

1
2 3

1
(6.3)

A change of variable from xi  and yi  to polar coordinates, where k x k y krx i y i i+ = cosθ

and k k kx y= +2 2 , allows the quantity in brackets to be evaluated.

σ
π

θ δ σ

σ

σ

ε

σ π θ σ

2 0

2

0 0 0

2 2 1 2

dt e
e

t
d drre vt r v dt e J kvt

v

v ik kv

i
k t

vt

i
i i

ikr
i i i

ik v t
i

t

t i

i

i t i
∞ −

− ∞ − ∞ − +( )∫ ∫ ∫ ∫−( ) = ( )

=
+( ) + ( )[ ]

cos

/

(6.4)

or,

ρ
π

σ

σ

x y t n dk e dk e dk e

v

v ik kv

t
ik t

x
ik x

y
ik y

t

n

t x y, , |

/

( ) =
( )

⋅
+( ) + ( )[ ]

















−∞

∞

−∞

∞

−∞

∞

+

∫ ∫ ∫1
2 3

2 2 1 2

1 (6.5)

After a similar change of variable for kx  and ky , namely, k x k y krx y+ = cosθ  and

r x y= +2 2 , (6.5) takes the form

ρ
π

σ

σ
x y t n dk e dkJ kr

v

v ik kv
t

ik t

t

n

t, , | /( ) = ( )
+( ) + ( )[ ]

















−∞

∞ ∞

+

∫ ∫1
2 2 00 2 2 1 2

1

(6.6)

The Hankel transform occurring in (6.6) is converted to a Fourier transform using the
identity

dk kJ rk
s k

z

z
dk

kr

s k
z z00 2 2 1 2 2 1 20

1 1 2
1

∞

+ +

∞

∫ ∫( )
+( )

= +( )
+( )

( )
+( )

Γ
Γ

/ cos
/π

(6.7)

a relationship valid for Rez > −1 2/ , Re s > 0 , which translates into n > 1.
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This identity is proved in the appendix and leads to

ρ σ
π π

σ
σ

x y t n

n

n
dk e dke

v

v ik kv
t

ik t ikr

t

n

t, , |( ) =
( )






+





+( ) + ( )[ ]












−∞

∞

−∞

∞

+

∫ ∫2
2

1
2

2 2 2

1

2Γ

Γ
(6.8)

A change in variables

k
v

k k

k k k

t = +( )

= −( )

+ −

+ −

σ

σ
2

2

(6.9)

allows the integrations to be performed, with the results, for n = 0 ,

ρ σ
π

δσx y t
v

r
e vt r

r t

vt, , | 0
2

0 0

( ) = −( )

< <

−

(6.10)

and for n > 0,

ρ σ
π

σσx y t n
v

s
e

s

n

s vt r r x y

r vt t

vt
n

, , |
!

( ) = ( )
−( )

= ( ) − = +
≤ ≤ ≤

−
−2 1

2 2 2 2

2 1

0 0

(6.11)

Here, ρ x y t, , | 1( ) has been determined by a direct integration.

Summing over n and dividing by σv  gives

ρ
π

δ σσ σx y t e
r

vt r
s

evt s, |( ) = −( ) +


−1
2

1
(6.12)

The density for the variable r is

ρ δ σσ σr t e
r

vt r
r

s
e

s vt r r vt t

vt s|( ) = −( ) +


= ( ) − ≤ ≤ ≤

− 1

0 02 2

(6.13)

It is a simple integration to show



Daniel L. Wenger/Random Walks in Space and Time

-16-

dr r t
vt

ρ |( ) =∫0
1 (6 .14)

Without giving the details, the density for measuring x alone is

ρ ρ

π
σ σ σ σσ

x t dy x y t

e
s

I s L s

s vt x vt r vt t

vt x

vt x
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| , |( ) = ( )

= + ( ) + ( )


= ( ) − − ≤ ≤ ≤

− ( ) −

( ) −

−

∫ 2 2

2 2

1
2 2

0

0 0

2 2

(6.15)

(7)

In this section we compute the two dimensional flux density ρ µx y t n, , , |( ) .

We take µ  to be the cosine of the angle between the vector x y,( ) and the flux vector.

ρ µx y t, , , | 0( )  and ρ µx y t, , , | 1( )  are computed directly and ρ µx y t n, , , |( )  for n > 1 is

then computed using Fourier representations of the delta functions.
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δ δ δ
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0 0 0

0
0 0

2
0

2

0 0

2 2
0

2
0

2

2 2

( ) =

⋅ −( ) −( ) −( )
⋅ − +( )
⋅ − +

+ +











= − +( ) −

∫ ∫ ∫

−

− 11 0( ) < t

(7.1)

For ρ µx y t, , , | 1( ) ,
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(7.2)
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The integrations over x y0 0,  and t0  are performed first.

After making the substitutions x r y r1 1= ′ = ′cos , sinθ θ  and performing the integrations

over ′r , we get

ρ µ σ
π

θ
δ µ

δ µ θ θ

σ π
x y t

v
e d dt

t t r vt vt r

v t t

x y

r

vt
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, , , |
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2

22
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(7.3)

Using the relationship

dx g x f x
g x

f xzeros of f x zero of f x

( ) ( )( ) = ( )
′( )∫ ∑

( ) ( )

δ (7.4)

there follows,

ρ µ σ
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x y t
v e

vt r
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2

2 2
( ) =

− −( )
−

(7.5)

Now computing ρ µx y t n, , , |( )  for n > 1,

ρ µ
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(7.6)

The substitutions

x r

y r

dx dy r dr d

n n n

n n n

n n n n n

=
=

=

cos

sin

θ
θ

θ

and the relationship

d e J a bi a bθ πθ θπ cos sin+( )∫ = +( )
0

2

0
2 22 (7.7)
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leads to

ρ µ σ
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(7.8)

Introducing k x k y krx y+ = cosα  and using the known Laplace transform of J0 , we get
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(7.9)

Neumann's expansion theorem gives

J kvt vt k k J kvt J k jn n j n
j

j0

2 22( ) + +



 = −( ) ( ) ( )

=−∞

∞

∑cos cosα µ αµ (7.10)

which allows the kµ  and α  integrations to be performed, namely

dk e J k
i Tik

j

j
j

µ
µ

µ
µ

µ
µ−∞

∞

∫ ( ) =
( )

−
2

1 2
(7.11)

and

d e j i J krikr j
jα α παπ

cos cos
0

2
2∫ ( ) = ( ) (712)

Again using Neumann's theorem
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−( ) −( ) ( ) ( ) = ( ) + −
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∑ 1 20
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(7.13)

we get
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(7.14)

The Hankel transform occurring in (7.14) is converted to a Fourier transform using the
identity (6.7). This leads to
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The transformation (6.9) gives
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(7.16)

The k+ and k− integrations are now performed giving
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ρ µ
σ
π π µ
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The integration may be performed and with

Γ Γn n n
nn2
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(7.18)

the following result is obtained.
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(7.19)

Integration of ρ µx y t n, , , |( )  over µ  gives

d x y t n x y t nµ ρ µ ρ, , , | , , |( ) = ( )
−∫ 1

1
(7.20)

namely, the two dimensional density (6.11).

The flux density for r  due to all collisions, expressed in terms of θ  the angle between the
direction of the flux and the position vector, is given by

ρ θ δ δ θ σ
π θ

θ π

σ
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r t e vt r
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vt r

s vt r

r vt t

vt
s

, |
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−

2 2

0 0 0

(7.21)

This is truly a simple and elegant result.
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Appendix

The identity (6.7)

Γ Γ
z dk

kJ rk

s k

z
dk

kr

s k
z z+( ) ( )

+( )
= +( ) ( )

+( )+

∞

+

∞

∫ ∫1
1 20

2 2 10 2 2 1 20

/ cos
/π

(a.1)

is now proved.

Express the gamma function in terms of its defining form. From the left side of (a.1),

Γ z dk
kJ rk
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dk dt t e

kJ rk

s k
z

z t
z+( ) ( )
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= ( )

+( )+

∞ ∞ −
+

∞

∫ ∫ ∫1 0
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Introduce the variable u  by the equation

u
t

s k
=

+( )2 2 (a.3)

Equation (a.2) becomes

Γ z dk
kJ rk

s k
du u e dke kJ rkz

z us uk+( ) ( )
+( )

= ( )+

∞ ∞ − −∞

∫ ∫ ∫1 0

2 2 10 0 00

2 2

(a.4)

The right side of (a.1) becomes

Γ z
dk
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s k
du u e dke krz

z us uk+( ) ( )
+( )

= ( )+

∞ ∞ − −∞

∫ ∫ ∫1 2 1
2 2 1 20 0 0

2 2/ cos
cos/π π

(a.5)

The problem reduces to one of showing that the relation

dke kJ kr
u

dke kruk uk−∞ −∞
( ) = ( )∫ ∫

2 2

00 0

1
π

cos (a.6)

is true.

The identity is established by expanding the integrands in series and integrating term by
term. The left hand integral is

dke kJ kr
u

euk
r

u−∞ −
( ) =∫

2

2

00

41
2

(a.7)
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and the right hand integral is

1 1
2

2

2

0

4

π
π

u
dke kr

u
euk

r

u−∞ −
( ) =∫ cos (a.8)

The above proof is a rephrasing of certain results due to Poisson and Sonine [5].
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