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CANONICAL ROOT VECTORS OF SU .. 135 

Another set of invariant operators of SU" are the 
familiar quantities 

N. " L: 
Gil 

i"tHce. 

E;;Ei" ... E •• E,i' 

r factors 

(4.17) 

where the summation is now over all i, j, etc., and 

Eli = Ui· H . (4.18) 

The eigenvalues N. are6 

.. 
N. = L: [8 iku,,·M + Wi·u"][8,,rur·M + W,,·ur] 

Gil 

x ... [8,. u.·M + WI·u.](u.·M), 
• v • 

(4.19) 

r - 1 factors 
• A. M. Perelomov and V. S. Popov, JETP Letters 1, 15 

(1965); see also F. Halbwachs, "Invariants Fondamentaux 
des Groups SU" et SU(n,I)," preprint (1965). 
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where 

Wi = L: rii = (2nri[(n - ~)U.] + 'll"i. (4.20) 
i<i 

This expression may be rearranged to give 
.. 

N. = L: Ci"C".··· C,.(u, 'M), 
all '---y-----' 

iMi ... r - 1 factors 

where 

and 

The independence argument given above may be 
applied to the N. to establish them as fundamental 
invariants. 
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We find the representation functions of the group of motions of the three-dimensional Clifford 
space and of the three-dimensional Einstein space. These functions are generalizations of spherical and 
cylindrical waves of three-dimensional Euclidian space and reduce to these familiar functions in the 
Euclidian limit. The generalization of the plane wave is also found. 

1. INTRODUCTION 

PHYSI CAL space is often characterized as a 
three-dimensional metric space of absolute par

allelism with positive definite symmetric metric and 
zero torsion. This space has an associated group 
of motions, that is, a group of coordinate trans
formations that leave the metric (and also the con
nection) invariant. This group is a six-parameter 
group usually decomposed into three displacements 
and three rotations. 

A generalization of the above space may be made 
by allowing the torsion to be nonzero, but uniform. 

This space still has a six-parameter group of mo
tions with transformations corresponding to dis
placements and rotations. In this paper we find the 
eigenfunctions of the operators associated with these 

* This work was partially supported by the National 
Science Foundation. 

t Submitted in partial fulfillment of the requirements of 
the degree of Doctor of Philosophy, University of California, 
Los Angeles, California. 

transformations and show their relationship to the 
usual eigenfunctions of Euclidian space, i.e., the 
spherical, cylindrical, and plane waves. 

2. SPECIFICATION OF THE SPACE 

The generalized space S considered here may be 
characterized as folIows1

•
2

: 

(2.1) 

n~/lI'Y+ = 0, (2.2) 

ga/lI'Y. = 0, • (2.3) 

where3 L~1l'Y ( + ), n~/l' and g all are tensors representing 
the curvature, torsion, and metric. The I ± sign ap
pearing above means the covariant derivative with 
respect to the (+) connection L~/l == L~/l( +) and 

1 L. P. Eisenhart, Continuous Groups of Transformations 
(Dover Publications Inc., New York, 1961), pp. 51 and 231. 

IE. Cartan and J. A. Schouten, Akad. van Wetens, 
Amsterdam, Proc. 29, 803 (1926). 

8 Latin and Greek indices run from 1 to 3 and the sum
mation convention is used. 
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136 DANIEL L. WENGER 

the (-) connection L:/l( - ), where 

L:/l == L:/l( +) == r:/l + !l:/l, (2 A) 

L:/l( -) == r:/l - !l:/l, (2.5) 

r:1i and !l:1i are, respectively, symmetric and anti
symmetric in a and {3. 

(2.6) 

(2.7) 

Explicitly, the (±)-covariant derivatives andasome
times used (O)-covariant derivative are given below 
where A~ is an arbitrary covariant vector. 

A~I'+ == a,A~ - L:,( + )A~, 
A~,.- == a,Ap - L:,( - )A~, 

(2.8) 

(2.9) 

(2.10) 

From (2.3) it follows that !lpali is completely anti
symmetric. If the torsion is taken to be zero, S 
reduces to the usual Euclidian space. 

3. ADDITIONAL PROPERTmS OF s 
The properties of the space defined by the (-) 

connection are the same as the space defined by 
the (+) connection; that is, 

L:/l'Y( -) = 0 (3.1) 
and 

(3.2) 

Also, the space defined by gali and r:1i IS an 
Einstein space, that is, 

(3.3) 
and 

(304) 

where Bali is the contracted curvature tensor formed 
from r:/l. Consequently, 

r:/l = {:Ii}, 

where {:lil is the Christoffel symbol. 

4. ENNUPLE FmLDS 

(3.5) 

Since S has the property L:Ii'Y (±) = 0, the two 
equations A~I'''' = 0 may be integrated to give two 
vector fields which are individually everywhere par
allel to themselves. 

If we take three vector fields A!( +) which are 
orthogonal at a point, then they are orthogonal 
everywhere. We think of these three vector fields 
as defining a basis at every point of S, the bases 
at different points being related by (+ )-parallel 
transfer. 

The same considerations apply to three vector 
fields orthogonal at a point and satisfying A!I'_ = O. 
They are orthogonal everywhere and are related 
by (- )-parallel transfer. 

We define an ennuple fundamental, or metric 
tensor g ii by 

gii = 1 if i = j, 

gii = 0 if i ~ j, 

and the ennuple tensor gij by giigik = O'k. 

(4.1) 

We then associate with the vectors A! the vectors 

and 

A.~ = giiA~, 

A'I' = g~'A;, 

5. GROUP OF MOTIONS 

Consider the following six quantities: 

X,(±) == A~(±) a~. 
Since the A!(±) satisfy Killing's equation 

(4.2) 

(4.3) 

(404) 

(5.1) 

(5.2) 

the quantities (5.1) are the generators of coordinate 
transformations that leave the metric invariant. The 
commutation relations of these generators are as 
follows: 

where 

[X.(+), X j (+)] = C,/(+)Xk(+) , 

[X,(-), X j (-)] = C,/(-)Xk(-), 

[X i (+), X j (-)] = 0, 

(5.3a) 

(5.3b) 

(5.3c) 

(504) 

The C./(±) are constant scalars because they 
satisfy 

(5.5) 

They also satisfy the Jacobi relations and are thus 
generators of a Lie group. 

The C./( +) and C./( -) are related by choosing 
the A!( +) and A!( -) to coincide at one point. Then 

C./(+) = -C./(-). (5.6) 

The quantity 

C'jk (±) = Ci/(±)glk 

is totally antisymmetric as a result of the 
symmetry of !lali'Y. Consequently, we set 

Ci/(+) = 2Kl Ei/, 
Ci /(-) = -2KtE./. 

(5.7) 

anti-

(5.8a) 

(5.8b) 
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REPRESENTATION FUNCTIONS OF CLIFFORD SPACE 137 

The invariance of n~1l under (5.1) is a consequence 
of n,,"1l rv gIE""Il' 

Since r~1l is derived from the metric, it is apparent 
that the connection is invariant under (5.1) and 
thus they constitute the generators of the group 
of motions of S. 

If we introduce the operators 

1 
X,(+) = 2iKI X i (+), i ~ 1, (5.9a) 

1 
-2iKi X l (+), (5.9b) 

(5.9c) 

then the commutation relations take the usual form 
for the four-dimensional orthogonal group. 

The relationship between the group of motions 
of Sand 0, may be seen in another way. As regards 
the metric alone, the space S is that of the surface 
of a four-dimensional sphere since g"ll describes an 
Einstein space. Transformations of this sphere that 
leave the metric of its surface invariant are the 
rotations of the sphere about its center. These 
transformations belong to 0,. 

6. REPRESENTATION FUNCTIONS 

We now wish to find representation functions of 
the group of motions on the space S. The rep
resentation functions of 0, on the four-dimensional 
Euclidian space are functions of three independent 
coordinates, the fourth coordinate being restricted 
by the condition that the radius of the sphere re
main invariant. These functions are the hyper
spherical harmonics and they constitute representa
tion functions of the group of motions of S. 

In general, 0, representations are labeled by the 
eigenvalues of two Casimir operators associated with 
the two invariant 03 subgroups, namely j(j + 1) 
and j'(j' + 1). From functions on a four-dimen
sional Euclidian space, only certain representations 
of 0, may be found, namely, those for which the 
Casimir operator eigenvalues are identical or for 
which j = j'. 

In terms of the X i (±), the two Casimir operators 
are 

g'''X,(+)X;(+) == X 2(+), 

giiXi(_)X;(-) == X 2(_), 
(6.1) 

and' these operators are seen to be identical when 
expressed in terms of the ;>"'s. Also X 2 is the La
placian in S 

4 The Killing form is identical to gi;' 

X2( +) = X2( -) = ~ = gl a.(glg'" a,,). (6.2) 

The form of the representation functions depends 
upon the choice of the set of eigenvalues used as 
labels. Weare guided by the desire to make a con
nection with the well-known representation func
tions of three-dimensional Euclidian space. Con
sequently, the following linear and bilinear com
binations of the X i (±) are of interest. 

Pi = (I/i)X i (+), 

Li = (I/2iKf)[X;(-) - X i(+)], 

L2 = gi;LiL;, 

p 2 = g';P;P; = _X2. 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

These operators have the following 
relations: 

commutation 

[Pi' L;] = iE,,.J\, 

[L;, L;] = iE;;kLk, 

[P 2
, Pi] = 0, 

[Pi' Pi] = 2KliEi"~k' 
[P\ L i ] = 0, 

(6.4) 

[L\ P;] = iE;;dP,., Lk}, [L2, p 2] = O. 

The operators have the property that in the limit 
of K ~ 0, i.e., in the Euclidian limit, their com
mutation relations become those for P" L" p2, L2, 
where Pi and Li are the usual momentum and 
angular momentum operators. 

Weare concerned with the representation func
tions for which the following sets of operators are 
diagonal 

(6.5a) 
and 

(6.5b) 

The functions associated with the first set cor
respond in Euclidian space to jl(kr)Y1m(fJ, ¢). The 
eigenvalues of p2, L2, La are respectively e, l(l + 1), 
andm. 

The functions associated with the second set cor
respond in Euclidian space to J m[(k2 

- k~)lpleik''''eim<l> 
with eigenvalues k2

, k3' and m for the three operators. 

7. RIEMANNIAN COORDINATE SYSTEM 

We begin the study of the various differential 
operators of (6.5) in the Riemannian coordinate 
system. The vector fields ;>..!(±) may be expressed 
in this system in the following wayl: 

;>..!(±) = ~! + !C"".'(±)x'" + ... 
+ [I/(r + I)!]C"",Il'C/l,a/' '" C/l,_,'",X'" '" x'" 

~i sin w + "i W - sin w + a 1 - cos w 
"w w W w3 W Ei"a W ' 

(7.1) 

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/8/1/135/11094120/135_1_online.pdf



13S DANIEL L. WENGER 

where dimensionless coordinates w" have been in
troduced 

(7.2a) 

and 

(7.2b) 

It is seen that in the limit K ~ 0, the },,! go to a!. 
The parallel vector fields of Euclidian space are 
the Cartesian coordinate axes. 

The other quantities of interest are 

_ ij }" '}" i-a" 2(1 - cos w) 
g". - if". -. w2 

w"w' + -4 (w2 
- 2 + 2 cos",), (7.3) 

w 

g'" = a" w
2 +" . (2 - 2 cos w - w

2
) 

• 2(1 - cos w) w w 2w2(1 - cos w) 
(7.4) 

""() " w sinw '" ± = a, 2(1 - cos w) 

+ w"w'(2 - 2 cosw - wsinw) + w'" . (7.5) 
2w2 (1 - cos w) 2 E"",., 

p. = ! [ w sin w !L 
• i 2(1 - cos w) ax' 

+ w"w'(2 - 2 cosw - w sin "') ~ 
2w2 (1 - cos w) ax" 

+ Kix"'E""" .i-.J ' 
ax" 

L. = ~ X"'E"",,(a/ax") = (1/'/,)(x i ak - Xk a;). 
'/, 

(7.6) 

(7.7) 

The Laplacian in this coordinate system takes 
the form, 

{
il w a 1 

.::l = 4K aw2 + cot 2 a", + 4 sin' !w 

[ a2 a 1 a
2 J} x ao2 + cot 0 ao + sin2 0 aq,2 . 

The equation 

p21/1 = _X21/1 = -.::l1/l = Kj(j + 1)1/1 

is solved by separation of variables to give 

1/1. = J/(j, w)Y1m(O, q,), 

(S.3) 

(S.4) 

(S.5) 

where the Y I ... (0, q,) are the usual spherical harmonics 
and the f,U, w) satisfy 

{
d2 w d 
dw2 + cot 2 dw 

+ [ .(. + 1) - l(l + I)J}- U ) - 0 1 1 4 sin2!w )1 ,w -

with solutionsG 

_ . [(n2 
- l2 - 1)'JI 

)I(j, w) = h(n2) , 

• 1 W dl+1 cos !nw 
X sm 2- d( .1 )/+1 , cos 2'" 

where n = 2j + 1. The metric is 

g". = ~[1 4 sin2 (!w) j. 
4 sin2 (!w) sin2 0 

The invariant volume element is 

(S.6) 

(S.7) 

(S.S) 

It is easily seen that as K ~ 0, P, ~ (l/i)(a/ax'). dT = gi dw dO dq, 
The L, already have the form of the angular mo-
mentum operator in Cartesian coordinates. = !R

a 
sin

2 
(!w) sin 0 dw dO dtP (8.9) 

8. SPHERICAL WAVES 

To obtain the generalization of spherical waves 
in S, we transform from the w" system to "polar" 
coordinates 

tan 0 = [(WI)' + (W2)2]i /(w3) , (8.1) 

tan q, = (w2) / (WI) • 

The coordinate w is dimensionless and equals 
2Kir, where r2 is the usual sum E!-1 (X")2. The 
ranges of the coordinates are 

0::::; w::::; 211', 

0::::; 0::::; 11', 

o ::::; q, ::::; 211'. 

(8.2) 

and the normalization of the 1/1. over the invariant 
volume is taken to be unity. The operators L2 and 
La have the forms 

2 (a
2 

a 1 a
2 

) 
L = - ao2 + cot 0 ao + sin2 0 aq,2 , (8.10a) 

La = (1/t) (a/ aq,), (8.10b) 

and with p2 have the eigenvalues 

p2 _ 4Kj(j + 1), 

L2 - l(l + 1), (8.11) 

La - m, 

6 These solutions are related to solutions of the hydrogen 
atom in momentum space; see V. Fock [Z. Physik 98! 145 
(1935)]. SchrOdinger dISCUSseS these solutions in his serIes of 
articles on eigenvalue problems in a hypersphere [E. SehrO
dinger! Cornmen. Pont. Acad. Sci. 2, 321 (1938); Proe. Roy. 
Irish Acad. XLVI, Sec. A, 9, 25 (1940)]. 
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REPRESENTATION FUNCTIONS OF CLIFFORD SPACE 139 

where j takes on nonnegative integer and half
integer values and land m range from 0 to 2j and 
-l to l, respectively, in integer steps. 

The behavior of 1/1. for small K is best seen via 
the differential equation that the il(j, w) functions 
satisfy, the Y 1m being unaffected in the limit K ~ O. 

We expand (8.6) for small values of W, keeping 
only lowest-order terms in w but allowing for large j. 
We obtain 

{w2 !z + 2w 1 + [Wilt - l(l + l)]}i!(j, w) = 0 

(8.12) 

with solutions jl(jw) or jl(kr), where k = 2Klj. 
Thus the usual momentum e = 4Kl is seen 

to correspond to the eigenvalue of p2 in the limit 
K ~ 0, Klj remaining finite. 

K-O 

p21/1. = 4Kj(j + 1)1/1, ~ 4Kt1/l. = k2 1/1.. (8.13) 
;-(0 

The interpretation of 1/1, as a representation func
tion of 0, is made by identifying w, 8, and 4> with 
the angular coordinates of a sphere in a four-di
mensional Euclidian space. If yp. are the coordinates 
of a unit sphere, then 

y! = sin !w sin 8 cos 4>, 

yS = sin !w cos 8, 

where 

yl! = sin !w sin 8 sin 4>, 

(8.14) 

(8.15) 

9. CYLINDRICAL WAVES 

The usual method of finding the cylindrical waves 
of Euclidian space involves a transformation to 
cylindrical coordinates and a separation of the 
Helmholtz equation in that system. The trans
formation from spherical coordinates is 

i~ = r cos 8, p=rsin8, (9.1) 

The generalization of this transformation is seen 
as follows. On a unit three-dimensional sphere draw 
a meridian M through an arbitrary origin or pole. 
A point A in one hemisphere may be labeled by 
its longitude (J with respect to M and polar distance 
tw or, by the shortest distance tfJ from A to M, 
which is via the great circle C through A and 
perpendicular to M, and the polar distance tWa of 
the intersection M and C. To make the labeling 
unique, points of (J < t1l" have W3 > 0 and points 
of 8 > t1l" have Ws < o. fJ is seen to range from 0 
to 11" and W3 from -211" to 211". The relationship be
tween the coordinate systems is (see Fig. 1) 

FIG. 1. Rela.tionship be
tween "polar" and "cylin
drical" coordinates. 

sin!fJ = sin !w sin 8, 

tan tWa = tan !w cos (J, (9.2) 

4> = 4>. 
Equations (9.2) reduce to (9.1) in the limit K ---+ O. 
Here fJ = 2Kfp and W3 = w8 = 2KfX3

• 

The equation 

[.6. + 4Kj(j + 1)]1/1 = 0 

now takes the form 

[ 
a~ a 1 a2 

8(32 + cot fJ 8(3 + cos2 (t(3) 8w! 

+ 4 sin~ (lfJ) ~2 + j(j + 1) J1/Io = 0 

with solutions 

1/1. = J",(j,8; fJ)e'··"e''''·, 
where J ... (j, 8; fJ) satisfies 

{
d

2 
d 1 [2 m

2 

dfJ2 + cot fJ dfJ - sin2 fJ 28 + 2'" 

- cos fJ(282 
- ~2) ] + j(j + l)}J = O. 

With the substitution 

8 = t(1' + v), 

m = -I' + v, 

Eq. (9.6) takes the form 

[(d2/d{l) + cot fJ - (1/sin2 (3) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7a) 

(9.7b) 

X (l + Vll - 2~v cos (3) + j(j + 1)]J = 0 (9.8) 

with solutions 

(9.9) 

where the d!.(fJ) are the familiar functions of the 
finite representation theory of 03 , 

The complete solutions may be put into the form 
of the D!.(a, (3, 'Y) functions as follows: 

1/1. = J ... (j, 8; (3)e'· .. ·e'm .. 

= (-lY+VNd~.({3)e"""e'·'Y 

= (-I)~+·ND!.(a,fJ,"Y), (9.10) 
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140 DANIEL L. WENGER 

where 

and 

l' = !wa + cP + 11", 

a = !wa - cP + 311", 

o :::; a :::; 4Ir, 

o :::; l' :::; 411". 

(9.11a) 

(9.11b) 

(9.12) 

N is a normalization factor which is now computed. 
The metric takes the form 

(9.13) 

with the invariant volume element given by (here 
R2 = K- 1

) 

dr = gt dfJ duJa dcp = lRs sin fJ dfJ duJa dcp. (9.14) 

We have 

(9.15) 

or 

(9.16) 

where V is the total volume of 8. The last integration 
is based on the orthogonality of the d! •. 

The operators p2, Pa, La have eigenValues 
4Kj(j + 1), 2Kip. = 2KI(s - !m), and -p. + 11 = m, 
where p. and 11 have the ranges - j :::; = :::; j in integer 
steps. 

The equation for J may be expanded for small K, 
or fJ, keeping only lowest-order terms but allowing 
for large j and s. 

We have from (9.6), 

( 
d2 1 d '2 2 m2)J- 0 
dti+'[JdfJ+ J -8 - ~ = 

or Bessel's equation with solutions J m(l - s2)ipJ. 
The argument is (k2 

- k:);p, where k2 = 4lK and 
ka = 2Ki s. 

10. PLANE WAVES 

Weare now in a position to see the generaliza
tion of the plane wave of flat space. The wave 
J m(k2 

- ~)tp]e·k·"·eimof> reduces to a plane wave 
in the three-direction when kg assumes its maximum 

value and when m = O. The same two conditions 
when applied to the generalized cylindrical wave 
define a function which we call a generalized plane 
wave. Thus the plane wave is 

1/;p = [(2j + l)/V]i d: i (p)ii". 
(10.1) 

= [(2j + l)/V]' cos2
; (!fJ)/i .... 

When expressed in terms of the dimensional coor
dinates and expanded for large R, we have 

.1. (2j + 1)'(1 . 2 p)i i~.x' 'YP = -V-- - sm Ii e 

~ (ivJeiksxa
( 1 - ~{ + ... ). (10.2) 

11. EINSTEIN SPACE 

As shown earlier, the space defined by g,.~ and 
r:~ is the Einstein space. Its group of motions is 
the same as that of 8(2). Thus, the above functions 
are also representation functions of the group of 
motions of the Einstein space on the space itself. 

In the case of 8, K is a measure of the torsion, 
there being no curvature to the space. In the case 
of the Einstein space, K is a measure of the curvature 
of the space, the torsion being zero. 

12. SUMMARY 

The space described here is in several ways a 
convenient one to describe physical space. The ob
served Hubble effect may be given an interpretation 
in terms of either an expanding Einstein space or 
an expanding Clifford space. Also, coordinate reflec
tions do not take the space into itself and con
sequently, linear equations involving the operators 
X,(±) are not invariant under parity operations.6 

Such a situation is interesting from the point of 
view of the description of processes in which parity 
is not conserved or is only partially conserved, such 
as in weak interactions. 

The functions discussed in this paper are basis 
functions for a description of quantization in Clifford 
space. The scalar field theory generalizes to Clifford 
space with no difficulty.7 Spinor quantization prob
lems are now being investigated by the author.s 
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