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Abmcrct-Covnrinnce matrices from stationary time des are Toeplib. 
Multichannel and multidimenrdolul processes have covariance matficea 
of Mock Toeplitz form. In these cwm and m m y  0th- 8ituatjon6, m e  
knows  that  the actual covprkllce matrix belong to a prrticplrr subdam 
ofcovarjancematrhs. T h i s p a p e r d k u a w s a m e t h o d f o r ~ a  
cowiance matrix of specified structure from vecta sampled of the 
random promu The  theoretical  foundation d the method ia to assume 
that the random process is zerOmean  multivariate Gaudan, and to find 
the maximum4ikdihood cowkllce matrix  that has the spedied rtnrc- 
ture. An existence proof is given and the dution L interpreted in 
term8 of a minimumentropy principle. The necesary gradient condi- 
tions that must be satisTred by the mWimum4iWihood dution are 
derived and unique and nonunique analytic soluticms for  some  simple 

A major contribution of this paper ia an itexative rlgoritfun that 
solves the necesslry gradient e q ~ t i o ~  for  modexateaized problems 
with m n a b l e  computational ease. Theoretical  convergence proper- 
ties of the basic algorithm are  inws-ted and robust modifiatioru 
discussed. In d o i i  maximumentropy spectrrl analysis of a sine wave 
in white  noise from a single  vector  sample, thia new estimrtion prom?- 
dure caw no splitting of the spectral line in contxast to the B q  
techniqlle. 

problms are presented. 

I 
I. INTRODUCTION 

N DOING spectral analysis of a .stationary  time series, one 
modern  approach is to use the “Burg technique” to  esti- 
mate second-order  statistics from  the raw time series data 

and then to use the  maximumentropy  method to generate an 
estimate of the power  density spectrum [ 1 1,  [ 21. These two 
steps  are  independent in that  one can use the Burg technique 
to estimate  the  autocorrelation  function  out to lag N and  then 
use a  conventional Fourier  transformation  with a  window 
function  to get the spectral estimate,  or,  one can use the con- 
ventional lag product  method of estimating the  autocorrelation 
function followed by use of the  maximumentropy  method of 
spectral estimation.  The Burg technique  and  the maximum- 
entropy  method solve two  separate  but  related problems. 

The  maximumentropy  method of spectral estimation can  be 
considered to be a  generalization of the autoregressive method 
of spectral estimation.  That is, if the second-order statistics 
that  are  known  about  the  spectrum consists of the first N +  1 
lags of the  autocorrelation  function  and if the  entropy of the 
time series is given by the integral of the logarithm of the 
spectrum,  then  the  maximumentropy  estimation procedure 
generates an  Nth  order all-pole model as the  functional  form 
satisfying the variational extremum. Demonstrating its  more 
fundamental  nature,  the  maximumentropy principle also tells 
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us precisely how to do multichannel and multidimensional 
spectral estimation using correlation  information  about  the 
spectrum. Actually, in a much  broader sense, the maximum- 
entropy principle  supplies us with  a  general approach to esti- 
mation  theory in which one  combines  information  with an 
extremal principle to select a possible solution to a  problem. 

In  this paper, we shall be  concerned  with developing a similar 
generalization of the Burg technique.  The  approach again uses 
a  variational  principle combined  with  information to produce 
a feasible solution.  The  particular problem that we attack is 
simply stated. Given a set of vector samples from a random 
process, we wish to select a covariance matrix of specified 
structure  that  corresponds in a  reasonable way to  the given 
data. The  solution  formulation is to assume that  the  random 
process is zero-mean multivariate Gaussian, that  the  vector 
samples are  independent,  and to  take as our  solution  the co- 
variance matrix of specified structure  that maximizes the 
probability of occurrance of our vector samples. As we shall 
see, it is easy to write down  the  probability of the  vector 
samples given that  the covariance matrix is R. In  fact,  the 
information  in  the  vector samples is neatly compressed into 
the sample covariance matrix S, so we just  end  up with  a func- 
tion p(S, R) in  the  two matrices S and R. R is constrained to 
be a covariance matrix of the  proper  structure while S is a 
random-sample covariance matrix  without any special structure. 

If we momentarily disregard statistical  considerations, the 
p(S, R) function gives us  the desired variational formulation 
for  the problem. That is, given the vector samples, we calculate 
the sample covariance matrix S and then solve for  the con- 
strained covariance matrix R that maximizes p ( S ,  R). Aside 
from  the  many technical questions  that  one might ask, there 
is the subjective question, namely, why is the R that maximizes 
this function a “good”  solution to  the problem? The response 
to  this  question is that p(S, R )  really comes from maximum- 
likelihood  considerations and  thus  should, in some sense, give 
us a  reasonable answer, even if the process is not Gaussian and 
the  vector samples are  not  independent. After all, the process 
might be Gaussian and  the samples independent. In the final 
analysis, however, the AS, R) variational  principle will survive 
only if it works well in practice.  And  a  practical  principle  must 
meet two criteria. It must work well on a large majority of 
meaningful situations and it  must  not be too difficult to com- 
pute. We  will try to show  that  the p ( S ,  R) principle  has the 
first of these attributes to a high degree and  that  the algorithm 
presented  herein  helps  greatly to reduce  the problem of 
numerical computation. 

II. DERIVATION OF THE VARIATIONAL PRINCIPLE 

Suppose a column  vector x is drawn  from an N-dimensional 
Gaussian distribution with zero  mean  and covariance matrix 
R. Using a  superscript T for  the  matrix transpose, the corre- 
sponding probability density function is 
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Now, instead of a single vector sample, suppose  that we have 
M independent  vector samples, x,, m = 1 to M. The probabil- 
ity density for this set of vectors follows from (1) as 

* exp - x,R ( m =I 

T - 1  

We consider the  situation where  R is unknown  except  that 
it is a  member of a certain family 3 of feasible covariances. 
This family is determined by the  structure of the underlying 
source of the  data vectors. For example, an  important case is 
where 3 is the collection of all positive definite  symmetric 
Toeplitz  matrices,  corresponding to a vector sample being N 
consecutive values from a  sampled stationary  time series, 

Given the  set of vector samples, x,, m = 1 to M, the R that 
belongs to 3 and which maximizes (2) is the "maximum-likeli- 
hood" estimate of the covariance matrix. Since we are using 
(2)  only as a function  to be maximized, we do  not change the 
problem if we maximize  a strictly  monotonic  function of (2), 
for example, the  natural  logarithm of (2). Thus taking the 
logarithm of (2), we get 

M 
-(MN/2)log(2n)-(M/2)logIRI-(1/2) x:R-'xm. 

m =I 

Dropping the leading constant  term  and dividing through by 
M / 2 ,  we define our objective function g(S, R)  to be 

g(S, R)=-log IRI - (l/M) xSR-'x,. 
M 

(3) 

Maximizing g(S, R)  is clearly equivalent to maximizing (2). 
To simplify (3), we employ a standard result from  matrix 
theory. 

The  trace of a square  matrix is defined to be the  sum  of  the 
elements along the main diagonal of the matrix. Now if A is 
an r by s matrix  and B is an s by r matrix,  then  both  AB and 
BA are  square  matrices and  thus  their  traces  are defined. A 
well-known matrix  theorem is that  their  traces are equal, even 
if they  are  different sized matrices. We now  note  that because 
it is a scalar, Le., a one by one  matrix, 

m =I  

xTR-' x = tr(x  TR-lx) = tr(AB) 

w h e r e A = x T , a o n e b y N m a t r i x a n d B = R - ' x , a n N b y o n e  
matrix. The  matrix  theorem says that 

xTR-' x = tr(AB) = tr(BA) = tr(R-'  xxT). 

Note  that  R-'xxT is an N by N matrix. Using this result, (3) 
can be written as 

M 
g(s, R )  =-log  IRI - t r  

Defining the sample covariance matrix S to be 

m =I 

we amve at the  compact  equation  for g(S,  R) of 

This is our basic objective function. We wish to find  the R 
that maximizes this function, given the sample covariance 
matrix S and given that R is constrained to have a particular 
structure. 

In the  next  section, we shall derive necessary conditions  for 
a maximum  in  terms of the  gradient of the objective function. 
Before  doing that, however, we investigate here  some general 
considerations about  the  existence of a  maximum for a non- 
negative definite R matrix. When S is singular, the general case 
is rather involved. Thus to simplify our discussion, we shall 
assume that  the S matrix is positive  definite. It is also under- 
stood  that  throughout  this paper, S and R are always assumed 
to be  symmetric matrices. 

We shall first derive an inequality relation involving trace 
(R-' S). Given S and R, there always  exists  a  nonsingular  con- 
gruence transformation  that simultaneously diagonalizes both 
S and  R.  That is, 

We shall normalize A so that  its  determinant is unity  and  thus 

The s, are all positive. The rn are  nonnegative with  the  num- 
ber of positive terms  equal to the  rank of R. Let us assume 
that R is nonsingular  and so 

tr(R-'S) = tr(A-'R-l A-TATSA) = (sn/rn).  

Now let US minimize trace(R-'S), keeping the  determinant of 
R constant. Using a Lagrange multiplier, we need 

N 

n =1 

or 

s, = AIR1 r, .  

We solve for A by 

giving sJrn = IR-' for all n. Thus holding IRI constant, 
we have our desired inequality relation 
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We note  that because this  relationship is not changed by scaling 
R, we can drop  the  statement  about holding IRI constant. 
Furthermore,  equality is achieved if and  only if R is a  multiple 
of S. 

Using this  relation, we now  note  that 

g(S,  R)  Q-log IRI - NIS(lp/IRI1'N. 

Thus if S is positive definite, as IRI goes to zero, g(S, R) goes 
to minus infinity  and  our  probability density goes to zero. 

We now  make  the following  observation for positive definite 
S. Let us assume that  the region % of allowable R matrices is 
simply connected  and  contains  at least one positive definite 
matrix Ro.  The value of g(S,  Ro) is some  finite value. Now it 
is clear that as R is varied continuously within the region 3, 
the value of g(S, R)  remains finite as long as R remains positive 
definite. As R  approaches  singularity,  however, the value of 
g(S, R) approaches  minus infinity.  It  then follows that con- 
tinuous variation of R in  order to find a maximum will never 
lead to crossing of the  boundary of singularity,  because points 
near the  boundary are worse than  the original point  Ro. This 
shows that, at  least in  terms of seeking a  local maximum,  at- 
tention can be focused on positive definite matrices. Thus  in 
an iterative  algorithm,  excursions of R outside of the positive 
definite region should not be allowed. 

We now  introduce a metric  on  the space of N by N matrices 
by considering the N 2  elements of the  matrix  to be compo- 
nents in an  N2-dimensional Euclidean  space.  This metric is 
consistent  with the  inner  product  introduced  in  the  next sec- 
tion. Let 9 be the  set of nonnegative definite  symmetric 
matrices. Then 0 is a  closed,  convex, connected,  and un- 
bounded subset of our  N2-dimensional  vector space. The 
boundary between 0 and its  complement  is  the  set of singular 
nonnegative definite  symmetric matrices. Next,  let &, be the 
set of matrices whose elements are less than  or  equal  to b in 
magnitude.  Thus !%b is compact, convex,  and connected. Let 
C b  be the  intersection of 0 and $b.  Then C b  is compact, 
convex, and connected.  Its  boundary  with  its  complement 
consists of singular nonnegative definite  symmetric matrices 
or positive definite  symmetric matrices  with some main diag- 
onal  element equal to b .  We now prove that if S is positive 
definite  and if 3 is a closed subset of the class of nonnegative 
definite  symmetric matrices, then  our  probability density  has 
a maximum in 41. 

First, if % contains  only singular matrices, our  probability 
density is zero over 3 and we are  finished. Thus assume that 
% contains a positive definite  matrix Ro and so our  probability 
density at Ro has a finite positive value. Next,  suppose b is 
larger than  any element of  Ro and  thus  Ro belongs to 3 f7 c b .  
Now % n C b  is compact  and  our  probability  density is con- 
tinuous. Thus  our probability  density has a maximum  in 
3 n C b .  This maximum is equal to  or greater than  the value 
at Ro .  Our proof will be complete if we show  that  for a large 
enough b ,  the  probability density is less than  it is at Ro for all 
positive definite  symmetric matrices  with  a  diagonal  element 
larger than b .  Equivalently, we need to show  that  g(S, R )  goes 
to minus infinity as the maximum  element of R goes to infinity. 

Let us begin our proof  by  doing the  orthogonal diagonaliza- 
tion of R so that 

0 

M ~ R M  = 

with MTM =I and with rl being the largest of the eigenvalues. 
Then we have 

N 
tr(R-'S) = tr(MTR-' MMTSM) = (qn/rn) 

n =1 

where the qn are  the diagonal terms of MTSM. If s is the mini- 
mum eigenvalue of S, then qn > s for all n. Then 

N 

n =I  
g(S, R) <- [log ( r n )  + (s/rn)I 

Since for 0 < x < w, -log (x) - s/x <-log (s) - 1, we have 

g(S ,R)<- log( r l ) - s / r l  - ( N -  1)  [log(s)+  11. 

Now, if b is the maximum  element of R,  then 

N 

n-1 
b < tr(R) = r ,  Q N r l  

and  thus rl > b /N.  Therefore, as b goes to  infinity, rl  goes to 
infinity  and g(S, R)  goes to minus infinity  and our proof is 
f i e d .  Thus if % is a closed set of nonnegative definite sym- 
metric matrices, then  there is a  maximum  value for  g(S,  R) 
in SI. 

If 3 is the space of nonnegative definite matrices, then we 
shall show later  that  there is only  one maximum to our proba- 
bility density and  it  occurs when R = S. If % is more  restricted, 
then  there may be multiple maxima.  One  simple  example is to 
suppose that 3 is a line weaving through  our nonnegative 
definite space and that it passes by S quite closely several 
times. Then, we would have multiple maxima in such an 
41 space.  One  can hope  that  there might be only  one maximum 
for subsets that  one  finds in  practice such as Toeplitz matrices. 
As a beginning study of multiple maxima, we  give in Section 
IV two examples, one a  linear  variety  and the  other a  linear 
manifold, in which there  are  two  equal valued,  symmetrically 
placed maxima. 

111. THE NECESSARY CONDITIONS ON THE GRADIENT 
The  problem is to maximize g(S,  R) over the matrices  R 

belonging to a class 3. We shall assume that  the class % is 
defined  by  a  linear  variety and is a  subset of the class of sym- 
metric  matrices. A good  example is the subset of Toeplitz 
matrices. Since a  linear  variety is closed, its  intersection with 
the  set of nonnegative definite  symmetric matrices is closed 
and thus, if S is positive  definite,  a maximum  for g(S, R) exists 
in the  interior of this  intersection.  Note  that we are not restrict- 
ing 41 to be nonnegative definite,  but  that we  will be looking 
for a  maximum in  the positive definite region of %. 

With these  assumptions, it is easy to characterize the solu- 
tion of the problem  in terms of the gradient of the objective 
function. Specifically, the gradient  must be orthogonal to 
variations in 3. Geometrically, that is all there is t o  it. Of 
course, to make  this  more  concrete,  it is necessary to define  an 
inner  product  on  the space of matrices so that  the  notions of 
gradient  and orthogonality have specific meanings. We shall 
define the  inner  roduct of two matrices C and D to be given 
by the  trace of C D. Note  that  the  inner  product is symmetric, 
bilinear, and  that  the  inner  product of a nonzero matrix  with 
itself is positive. 

With this  definition, we now need to find  the gradient of 
g(S, R)  with respect to R. We shall do  this by deriving the 
variation of g in  terms of the variation of R. We note  that if R 

F 
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is an N by N symmetric matrix, we may have up  to N(N - 1)/2 
independent variables! One is thus faced with  the  thought of 
having to deal with very large matrices for  moderate sized 
problems. Fortunately,  the large number of equations can  still 
be treated in terms of just N by N matrices. 

To  derive the necessary conditions, we begin with some 
definitions  and  two  matrix  theorems. First, we defiie  the 
variation of R to be 

I 6R(1,  1)  6R(1,2) SR(1,N) 
SR(2,  1)  6R(2,2) * * -  6R(2,N) 

6R(N,  1)  6R(N, 2) * * - 6R(N, N) 1 6R = . . . . . . . . ... .... 

where 6R(i, 1) is the variation of the i, j th element of  R. 
Our f i i t  matrix  theorem gives us  an expression for  the vari- 

ation of the  determinant of R in terms of the variation of R. 
If IRI is not zero, then 

6lRl = IRI tr(R-'6R). 

One derives this  equation  by  noting  that if the  determinant of 
R is explicitly written  out  in  terms of its elements, then  the 
coefficient of R(i, j )  in  this expansion is the  cofactor of R(i, j ) .  
In  the inverse of R,  the j ,  ith element is equal to  the cofactor 
of the i, j th element of R divided by  the  determinant of R.  In 
our above equation, we see that this is the coefficient of  the 
variation of the i, j element of R.  Now,  noting  that 6 log IRI = 
SlRI/IRI, we have the  important corollary that 

6 log IRI = tr(R-'6R). 

Our second  useful matrix  theorem gives us  the variation of 
the inverse of R in terms of the variation of R. We first  express 
the  relation between the  elements of R and R inverse by  the 
matrix identity 

RR-' = I .  

Taking the variation of this  identity, we have 

SRR-' + R6(R-') = S I =  0, the null  matrix. 

Our result is then 

s(R-') = - R - ~  ~ R R - ' .  

Now we can derive the variation of g(S, R) easily as 

6 g ( S , R ) = - 6  log IRI-  6tr(R-'S) 

= -tr(R-'6R) - tr  [6(R-') S ]  

= - tr(R-' 6R - R-' 6RR-' S) 

= tr(R-'SR-' 6R - R-'6R). 

Our  expression for  the variation of g(S, R)  is thus  neatly 
written as 

6g(S, R) = t r  [(R-' SR-' - R-') SR] . 
The  condition  for maximization is that  the gradient 

R-'SR-' - R-' is orthogonal to changes in % space. That is, 
the variation of g is zero for  any feasible variation of R.  Thus 
the  equation we shall solve is 

tr[(R-'SR-' - R-') 6R] = 0. ( 5) 

It  often  happens  that  the  structural  constraint  on  the varia- 
tion of R is satisfied by R  itself. The  Toeplitz  constraint is 
one case of this. We can then replace 6R  in (5) by  R itself and 

the  equation remains true. Our equation  then says that 

tr  [R-'S] = N .  ( 6 )  

If we substitute this into g(S, R), we have 

g(S, R)=-log IRI - N .  

From this, we see that if R itself satisfies the  structural con- 
straints on the variation of R,  then we can restate  our varia- 
tional principle as: 

Minimize the  determinant of R under  the  constraints that R 
belongs to % and  that  the  trace of (R-' S )  equals N.  

This is a very interesting  and  intuitive way of stating  our 
variational principle. In  Section II, we derived the  inequality 
relation 

tr(R-'S)ZNJR-'SI'm =NISI'IN/IRI'W. 

Using this, we see that (6) places a  scale factor  constraint  on R 
so that IRI is equal to or greater than IS(, with  equality occur- 
ring only if R can be equal to S. We shall show  later  that ( 6 )  
gives us the  minimum variance estimate of the  optimum scale 
factor  for R  when we are dealing with a Gaussian process. In 
the Gaussian situation, we also note  that  the  entropy of the 
random process is given by  log IRI, so this special case of our 
general variational  principle is saying: 

Choose the R that corresponds to the  minimumentropy 
process under  the auxiliary constraint  that R is normalized 
by  the minimum  variance  scale factor.  The  entropy of the 
estimated process is equal to or  greater than,  but as close as 
possible to, the  entropy of the process  corresponding to the 
sample  covariance  matrix. 

To show  that this  alternative  principle is consistent  with  the 
more general principle, let  us minimize log IR I under  the con- 
straints  that ( 6 )  holds and  that  6R belongs to %. Using a 
Lagrange multiplier X, we can  write 

&[-log IRI - htr(R-'S)] = -tr[(R-' - XR-'SR-') SR] = 0. 

Since both R and 6R belong to %, we can set  6R = R.  Then 
we have 

tr(Z- XR-'S) = 0 or  Xtr(R-'S) = N .  

Thus ( 6 )  tells us  that X = 1. Therefore, if 6R belongs to a, 
minimizing log I RI under ( 6 )  is equivalent to maximizing 
g(S, R). 

IV. SOME SIMPLE CASES OF COVARIANCE 
FSTIMATION AND THEIR SOLUTIONS 

In this section, we shall formulate  some relatively simple 
cases of covariance estimation  and solve them using our vari- 
ational principle. We assume that  our  data consisted of a set 
of N-dimensional vector samples, and  that we have already 
formed  the sample  covariance matrix S. To simplify our dis- 
cussions, we shall assume here  that  the sample covariance 
matrix is positive definite. If S is singular, then  in  some cases, 
our  solution is also singular,  which  requires  a more careful 
consideration of our basic equations. We point  out  here, how- 
ever, that S being singular does not mean in general that R is 
singular. For example, for  Toeplitz  structures, we normally 
obtain a  nonsingular matrix  for  our  estimate even if S is 
formed  from a single vector sample. 

With S positive definite, our  solution is interior to the space 
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of nonnegative definite matrices  and  a  maximum must satisfy 
the necessary gradient conditions. Thus if the gradient  equa- 
tions have only  one  solution,  then  the corresponding  maximum 
is the only maximum. In most of the examples in  this  section, 
the  solution is proven to be unique. Uniqueness if 3 is Toeplitz 
is not  known,  but  two simple examples  are given showing non- 
uniqueness for linear  variety and linear  manifold cases. 

In some of the chosen  examples below, we already “know” 
what the best answer should be. In other cases, one may not 
be so certain that  the derived answer is the best. In this latter 
case, use of the variational  principle may end up changing one’s 
intuition  about what answers do make the most sense. 

The  Unconstrained Case 
The simplest problem  to solve is when the R matrix is not 

constrained. Then  the variation of R is arbitrary  and  the gradi- 
ent must be identically  zero. Then we have from (5) that 

R-~sR-‘  - ~ - 1  = 0 

which gives us immediately the  unique  solution of R = S. Of 
course, we have already covered this case in Section 111 since 
the variation of R belongs to 3 and R can be equal  to S. 

Unknown Scale Factor Case 
Suppose that we know  the covariance matrix  up to an un- 

known scale factor. An example of this is if one  knows  the 
shape of a spectrum as a function of frequency,  but  does  not 
know  the average power.  This  occurs if one passes white  noise 
of unknown power through a known filter. For  our general 
problem, we let R = a W ,  where W is a given positive definite 
symmetric matrix that is known to be proportional to  the 
true covariance matrix  and “a” is the  unknown scale factor. 
In the white-noise example, we note  that  the  elements of W 
would be obtained  from  the  autocorrelation of the impulse 
response of the filter out  to lag N -  1. Then, with R = aW, 
6R = (6a )  W and we have from (5)  that 

tr [ (aW)-’S(aW)-’  - (awl - ’  1 W =  o 
or 

tr[(aW)-’S - I ]  = o 
giving 

a = ( l / N )  tr[W-’Sl. ( 7) 

One might not recognize that this unique  solution is indeed 
the best answer since  in our above example of white noise of 
unknown power passing through a known  ,filter,  the  output 
power is normally  estimated  by  a  direct  power average over 
our  data samples. We shall now show in general that using the 
information provided by knowing W, (7)  gives us  the minimum 
variance estimate of “a.” 

Let us express the  unique Cholesky  decomposition of W in 
the  form 

W = c-1c-T 

where C is lower  triangular and  its main  diagonal  consists of 
positive terms. Let  us assume that x is one of our  column 
vector  samples and let us  create  the  vector sample y by  the 
linear transformation 

y = Gx. 

We can now  write 

961 

aCWGT = average value of cxx ‘c’ 
= average value of y y  ’. 

Thus the vector  sample y is made up of N independent  random 
variables of uniform variance “a.” If x is multivariant Gaussian, 
so is y ;  and in this case, the best estimate of the variance of 
the y variables is simply the average square value over all ele- 
ments in all vector samples. Weighting each independent 
sample  equally gives us  the minimum variance estimate. We 
now derive our  estimate  for “a” in terms of S and W as 

aN = sample average of the  tr of y y  ’ 
= sample average of the  tr of Gxx‘G‘ 

= tr(GSGT) = tr(G’Gs) 

= tr(W-’S), since W-’ = C‘C. 

We now see that  our variational  principle has indeed  led us 
to  the best estimate of “a.” 

If W were already  equal to our  solution  matrix R ,  then we 
see that “a” = 1 and (7 )  becomes (6). Thus  the  optimally 
scaled R matrix does  indeed  satisfy (6) as discussed at  the end 
of Section 111. 

The  Burg Technique Case 
One of the main features of the Burg technique is that  the 

problem of estimating the reflection  coefficients of a stationary 
time series is turned  into  one of estimating the covariance 
matrix of a  pair of random variables whose individual variances 
are known  to be equal. In this case, the  structure of the  two 
by two covariance matrix is of the  form 

6a 6 b  
R =[ , with6R =[6b  

Equation (5) now tells us that  the  sum of the  two diagonal 
elements of the gradient  must be zero. Also, since the gradient 
matrix is always symmetric, we see that  the gradient  matrix 
must  actually be diagonal in this  present case. Thus  the gradi- 
ent is of the  form 

R-~sR-’ - ~ - 1  = [ “1. 
We now invoke a  matrix theorem concerning  transposes 

about  the  minor diagonal, i.e., flipping the  2atrix  about  the 
diagonal that  runs upward to  the right at 45 . If we denote 
the transpose about  the  minor diagonal by  a  pre-superscript 
T,  then it is easy to prove that if A B  = C, then 

(=B> ( ‘A) = ‘C. 

Then we see that since R-’ = ‘R-’, we have 
~ - 1  SR-’ - ~ - 1  + ~ - 1   ~ - 1  - 

the null matrix,  or 

R-’(S + ‘S) R-’ = 2R-’ 

or  that  fiially 

R = (1/2) (S + ‘S). 
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Thus  the  estimated covariance matrix R is the  minor diagonal 
symmetrized version of S, as given by the Burg technique. 

The above use of the  transpose  about  the  minor diagonal 
gives us the following interesting and  useful theorem. If the 
structure of R is such  that R is equal  to  its  minor diagonal 
transpose, then  the inverse of R and  the variation of R have 
this  same property. Now, since  transposing  a matrix  around 
either diagonal does not change its trace, we see that if R is 
also minor diagonal symmetric,  then averaging the minor 
diagonal transposed form of (5) with  itself, we have that R 
also satisfies 

tr [R-' ((s + T ~ ) / 2 )  R-' - R-' I 6~ = 0. 
Thus we can average S with its  minor diagonal transpose  and 
use this average in (5) to get  the same answer for  R.  In  fact, 
one can now  note  that if 4( is minor diagonal symmetric,  then 
S can be replaced by  the  minor diagonal symmetrized  matrix 
without  any change to  our objective function (4). Thus we 
can start with this replacement and  not change the  functional 
form  or numerical  value of any of our  equations. This is of 
more  than passing significance. 

One could hope  that, when there are three  or  more variables 
whose variances are  known to be  equal, the  optimum  estimate 
of their variance is also the average of the sample average. Un- 
fortunately, this simple property does not  extend  beyond  two 
variables. The reader  can  investigate for himself why this is so 
from a mathematical  point of view. An intuitive feeling for 
this fact can be developed if one supposes that  the S matrix 
happens to indicate  that  the middle variable is almost indepen- 
dent of the  other variable< but  that  the  other variables are 
strongly dependent.  Then, weighting all the variables equally 
to  estimate  the variance would not seem to be the right thing 
to do. This line of reasoning only says that a  straight average 
is not  optimum.  The variational  principle gives us a solution 
to this problem. Unfortunately,  it  cannot be written  down 
explicitly. 

Prediction  Error  Filter  Interpretation 
The Burg technique is based on  the  properties of prediction 

error filters. It is interesting  that  the maximum-likelihood 
procedure also can  be interpreted  in  terms of prediction  error 
filters, but  in a more  indirect manner.  This interpretation 
arises i f  one considers that  the  mth  column of R-' is propor- 
tional to  the  prediction  error filter that predicts the  mth ran- 
dom variable from  the rest of the variables. The diagonal 
terms of R-' are the reciprocal values of the mean-square 
errors of the corresponding prediction  error filters. 

The congruence transformation of S by R-' , that is R-'SR-' , 
gives us the covariance matrix of the  prediction  error  filter 
variables, scaled by  the reciprocals of their mean-square errors. 
Now, the necessary gradient condition (5) can be rewritten as 

tr[(R-'SR-' - R-'RR-')6R] = O .  

If S' = R-'SR-' and R ' = R-'RR-' = R are  the  transformed 
covariance matrices, then we can  write 

Thus  the gradient condition is more  directly  related to the 
scaled prediction error  filter variables than  they  are to the  un- 
transformed variables. We shall use this observation in  the 
sequel. 

Two Variables with  Fixed Value  Constraints 
In  addition to   the above two variable case in which the  two 

variances  are known to be equal,  there is a class of two variable 
problems in which the precise value of one  or  more of the 
second-order statistics is known. These problems arise in prac- 
tical situations  and  are also interesting from a  philosophical 
point  of view. There  are basically four  such problems, two of 
which have closed-form solutions  and  the  other  two  require 
the  solution of a cubic  equation. Note that  in  these problems, 
the variation of R does  not belong to 3. 

One of the  Variances is Known: Let us assume that  the 
variance of the first  variable is known to be unity. Choosing 
unity is clearly as general as any  other  constant. So let 

Now since 

we see that 

which leads to 

Thus a = A -  1 and we have c = C / A  and b = B + ( l - A )  
( C / A ) 2 .  Our theoretical development  has shown  that if S is 
positive definite, then R is positive definite. We verify this  and 
see what happens  in  the singular case by  checking b 2 0 and 
b - c 2  2 0. Clearly, the first inequality  is  true if the second is 
true,  and  the second is true i f b  = B - C 2 / A  = (AB - C 2 ) / A  2 0. 
If B is zero, then b is zero and R is singular. 

Having c = C / A  is clearly reasonable and  perhaps intuitive. 
To see that  the  solution  for b is also reasonable, one can note 
that to do  the  linear least mean  square prediction of the second 
variable from  the  first involves merely  multiplying the first 
variable by c. One  could estimate  the resulting mean-square 
prediction error  from  either S or  R. Actually, b is such  that 
both  of  these  estimates are the same, that is, 

[ -c 11 3[11] = [ - c  1][ 3[1;1 = b -  c 2 .  

This interpretation, of course,  follows directly  from  the pre- 
vious observations about transforming into  the  prediction 
error variables and  from  noting  that  the lower right term of 
the gradient is zero. 
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One  Variunce  and the Cross Variunce  are Known: Suppose 
in  addition to knowing that  the first variable has  unity vari- 
ance, it is also known  that  the cross variance is c .  Using the 
above expressions for R and S, we note  that 

and 

Only the  bottom right-hand equation needs to be solved and 
it is 

b = c '  + c ' A -  2cC+B.  

We note again that this b is such as t o  make the  two  prediction 
error estimates as shown in (8) equal. 

The Cross Variance is Known: Here we start  with 

a c  o r  
R =  and R-'SR-' - R-' = 

c b  7 0  

Pre- and post-multiplying this last equation  by R ,  we have 

or 

From  the  two  equations  on  the main  diagonal, we see that A = 
a( 1 + 2 y c )  and B = b( 1 + 2yc ) .  Thus a has the same proportion 
to A as b has to B. To actually solve for a,  we end up with  a 
cubic equation in a that says 

Thus we see again that  the  solution says that  the  prediction 
error is the same whethe we apply  the  optimum  estimated 
filter to  the sample  covariance matrix  or  to  the  estimated co- 
variance matrix. 

Both Variances  are Known: We can  assume without loss of 
generality that  both variances are  unity. In working out  the 
equation  for c ,  we end  up  with a cubic  that again says that  the 
sample and  estimated least  mean square  error  in predicting one 
variable from  the  other are  equal. 

An  Example of Nonuniqueness of Solution 
Suppose we consider the  two matrices '1 and Z = [ l i a  11] 

0 1 - 4  

and let R ( x )  = Y( 1 + x)/2 + Z( 1 - x ) / 2 .  Thus R ( x )  defines  a 
one-dimensional linear variety in our four-dimensional  vector 
space. Defining 

we have 

We note  that R ( x )  is characterized by being diagonal and having 
its  trace  equal to 2. 

Suppose now  that  our sample covariance matrix is (1 - a2)/2 
times the  identity  matrix.  Then  our objective function 
g(S, R )  is 

Letting y = (1 - a ' ) / [  1 - (ax ) ' ] ,  our objective function can be 
written as 

[log(y)- y +  11 + [-log(1- a ' ) -  11. 

Since log(y) - y + 1 d 0 for 0 < y < 00, and is equal to zero 
only when y = 1, we see that  the objective function has its 
only  maxima at x = +1 and  that  these  two maxima  are both 
equal to -log  (1 - a ' )  - 1. The minimum between these two 
maximaisa tx=Oandhas thevalue- (1-a ' ) .  

As a  verification, we check the necessary conditions by 
noting  that  the gradient is 

1/( 1 - a x )  J 
[ 0 (1 - 2ax + aZ)/(  1 - ax)' I* (1 + 2ux + a')/( 1 + ax)' 0 

= (- 1/2) 

We note  that 

SR(x)  = a i' O 1 t i X .  

LO - 1 J  
Thus the  condition  on  the gradient that we are looking for is 
that  its  two diagonal terms  be equal. This occurs only when 
x = +1 or when x = 0, verifying our necessary conditions. 

If one  forms a  linear  manifold from  two diagonal matrices, 
the first with  diagonal values of [ 2/( 1 + a) ,  1 /2,2/( 1 - a )  1 and 
the  second  with  [2/(1 - a) ,  1/2, 2/( 1 + a ) ] ,  with  the magnitude 
of "a" less than  one,  then if the sample covariance matrix is 
the  identity  matrix,  one  finds  that  there  are  two maxima for 
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g(S, R), occurring when R is equal to  one of the generating 
matrices. Thus even when one can scale the R matrix with an 
arbitrary multiplier, there can be more than  one  solution  to 
the maximum-likelihood estimation procedure. 

V. THE INVERSE ITERATION ALGORITHM 

We shall now  develop  a general iterative process for  deter- 
mining a solution to  the necessary conditions as given by ( 5 ) .  
The  approach used here is somewhat abstract,  but  it greatly 
simplifies the development since concepts are  isolated from 
the  intricate  computations  that may be  required to express 
the  concepts in concrete  form.  To avoid additional complex- 
ity in our derivation, we shall consider  here only  the  common 
situation where the variation of R belongs to 3. The case in 
which elements of R  are constrained  to have particular  numer- 
ical values can be treated by similar methods by using a  reduced 
dimensionality. 

The Algorithm 
The iterative process that we consider  here shall be termed 

inverse iteration. At any stage, we begin with an  approxima- 
tion Rk and a new approximation  Rk+l is determined as 
follows: 

1) Find Dk belonging to 3 so that g ( s  - Dk,  Rk) satisfies 
the necessary conditions. 

2) Put  Rk+l = Rk + Dk. 
Note  that in step  1, we find  the change (belonging to 3) in 

our  data S that makes the  current  approximation  optimal. 
Then, in step 2 the  approximation is updated  by  the negative 
of this  virtual change in the  data.  That is why we have chosen 
to name the  method inverse iteration.  The main reason for 
using inverse iteration  for  this problem is that  the gradient of 
the objective function is linear  with  respect t o  S, so the  prob- 
lem implied  by step 1 is a  linear  problem. Note  that  at each 
step of our  iteration,  our  approximation satisfies our linear 
constraints.  Experience has shown,  however, that  the new 
approximation can jump  out of the positive definite region. 
We shall discuss later a small modification of the basic algo- 
rithm  that handles this possibility. 

Improving  Direction 
There are some basic properties of the inverse iteration 

process that are extremely  important.  The first is that  the 
direction of change Dk  is an improving  direction. That is, if 
Rk is changed by adding  a small amount of Dk,  the objective 
function will increase over what it was with  Rk. We shall 
now prove this. 

R-' = CTG, 

Then 

tr  [R-'DR-' D l  = tr [ GTGDGTGD] = tr [(GDGT) (GDGT)]. 

Since D is a symmetric  matrix,  the  matrix GDGT is symmetric 
and we are  looking at  its  inner  product with  itself.  Since  D is 
not zero, this inner product is positive and we have proven 
that D is an improving direction, 

Quadratic Approximation 
Although  D defines an improving direction, it is not  yet clear 

how far to move in  that direction. The basic algorithm moves 
a  distance qD, with  q = 1. Computational experience  has 
shown  that  the best value for q is indeed  often  equal to  unity, 
but  it would be best to move the distance that maximizes the 
objective function.  To  initiate  an investigation of this general 
subject, we derive here  a quadratic  approximation  in q for  our 
objective function.  It is interesting how easily this and higher 
order  approximations can be  generated  by use of the  trace 
function. 

Using the matrix theorems developed in  Section 111, we 
derive the  secondorder  expansion of g(S, R + qD) as a func- 
tion of q about q = 0 by  first noting  that 

dg(S, R + qD)/dzqIq1,, = tr(R-' DR-' D) 

+ t r [ ( R + q D ) - ' D ( R + q D ) - ' S I .  

The second derivative, evaluated at q = 0, can now be derived as 

d2g(S, R + qD)/d2ql = tr(R-'DR-'D) 
9-0  

- 2tr(R-'DR-'DR-'S). (9) 

Having already shown  that  the first derivative evaluated at q = 0 
is just  the first term in (9), we can now  write down  the  Taylor 
expansion out to second order as 

g(S, R + qD) = g(S, R) + (q + q2/2)  tr(R-'DR-'D) 

- q2  tr(R-'DR-'SR-'D). 

Differentiating  with  respect to q and  setting  the result to zero 
gives us  the maximum of this  quadratic expression as 

qmax = [tr(R-'DR-'D)]/[2tr(R-'DR-'SR-'D) 
- tr(R-'DR-'D)] . 

One of the  unproven  conjectures of this paper is  that  qmax 
approaches unity as the iterative  algorithm converges. 

What we wish to show is that  the gradient of g(S,  R)  with VI. COMPUTATION OF THE INVERSE ITERATION 
respect to R has a positive inner  product  with  the  direction D 
determined by step 1. This  means that small movement along 
D wiU yield a positive change in g. In  mathematical  terms, we 
wish to show  that 

The iterative  algorithm discussed in the previous section  is 
based on repeatedly solving a  linear problem  in  order to deter- 
mine the new estimate of the covariance matrix  R.  The solu- 
tion of this linear  problem is, computationally,  the most 

t r  [(R-'  SR-' - R-') D ]  > 0. difficult  part of the algorithm. By suitable  formulation  and 
use of available structure, however,  a  very  efficient procedure 
can be developed. 

Formulation  and  Dualitv 

The left side of this can be rewritten as 

t r  [(R-'(S - D) R-' - R-'1 Dl  + tr  [R-'DR-'Dl. 

The first term is zero  by construction since this is the require- 

the second term is positive. 
Inent that R is optimal  for  the  data s - We now prove that ( 5 ) .  It is repeated here (with  different  notation) as 

The necessary condition  for a solution has  been given by 

Since R is positive definite, we again do  the Cholesky d e  that of finding an R that satisfies 

composition & we did in Section  IV,this  time  in  the form- tr[(R-'SR-' - R-')  Q] = 0 
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that lies in g!. (We usually start  with  the  identity  matrix  for 
(lo) the  Toeplitz  constrained problems.) 

for al l  Q in %. This is linear  in the  unknown R '. 
A problem  of  this type is  a g e n e r d e d  projection  problem. 

It can be solved  by  selecting  a basis either  in 2 or in the  orthog- 
onal complement of 2. We propose  here to  use  a  basis in 
9 itself since in  most  applications,  such as the case  where 9 is 
the space of symmetric  Toeplitz matrices, this will be  of  con- 
siderably less dimension  than  the dimension  of the orthogonal 
complement. 

Let the basis in g! be Q,, m = 1 to  M, where we are  assum- 
ing that  the  space is of dimension M. We note  that  the Qm are 
symmetric matrices. Then we write  an  expansion  for the un- 
known R' as 

m = l  

This expansion is substituted  into  the basic  linear  condition 
( 10)  which  leads to  

M 
t r  [R-' Q ,  R-' Qj]  x, = t r  [R-'SR-' Qj ]  

m = l  

for j = 1 to  M. 
This is a  system of M equations  in  the M unknowns x,, m = 

1 to  M. Solution of this  system  yields the  next  approximation 
R' by using (1 1). If  we define the matrix A by 

Aij = t r  [R-' QiR-' Qj ]  

and 

cj = t r  [R-' SR-' Qj ]  

the  system  takes  the  standard  form 

A x  = c.  (12) 

Proof that A is Positive  Definite 
We can  show  that  the  matrix A defined  above is symmetric 

and  positive  definite.  Actually, the  symmetry is seen  immedi- 
ately. Being positive  definite is quite  important  for  implemen- 
tation, since it means that  the  efficient  algorithms  for  solution 
of symmetric positive  definite  systems  can be employed. 

Consider 

i,j=1 

where 

We have shown before that when R is  positive  definite and B is 
not  the  null  matrix, this expression is positive,  showing that A 
is positive  definite. 

2) Using this R ,  calculate all the  traces  required to  define 
the  matrix A and solve the system  (12).  Then use (1 1) to  ob- 
tain a  tentative new approximation R '. 

3) Evaluate the  function g(S, R '). If this value is not larger 
than  with the previous approximation  or if the  new  approxi- 
mation for R is not positive  definite,  then  define D = R ' - R 
and try an approximation of the  form R + qD for 4 = 3. 
Keep cutting q by  a  factor of two  until  an  approximation 
satisfying the above  requirements is found.  Set  the  new R 
equal t o  this value  and  go  back to  step 2. 

There  are, of course,  numerous  variations  possible,  especially 
regarding the  stepsize  determination. 

vu. SINE WAVE IN WHITE NOISE EX~hfaEs 
In  this  section, we shall compare the maximum-likelihood 

procedure  with the Burg technique  for  estimating  a  Toeplitz 
covariance  matrix from  a single vector  sample. This vector 
sample is supposed to  be eleven  consecutive  samples  from  a 
sinusoid in white-noise  process. The  estimated  Toeplitz  matrix 
provides us with  an  estimate  of  the  autocorrelation  of  the 
process out  to lag 10.  Instead  of  trying to  compare  results  by 
looking  at  the  estimated  autocorrelation values, we have plotted 
the  corresponding  maximum  entropy  spectra. This  spectral 
domain  presentation  best  illustrates  a  major  problem  with the 
Burg technique;  namely,  that of splitting  a single spectral  line 
into  multiple lines. The  vector samples  have  been  chosen to  
produce  line  splitting in a  controlled  manner  and  thus  clearly 
expose the cause  of the phenomena. An outstanding  property 
of the maximum-likelihood  estimation  procedure  is that  it is 
impervious to  this  line  splitting  problem, even for  the worst 
case  vectors. 
Our sample  covariance  matrix S is  very  singular  since it is of 

rank  one.  (Actually,  since  Toeplitz  matrices  are  minor  diagonal 
symmetric, as a  first  step we can take  the  sample covariance 
matrix  that we  get from  time  reversing  our  vector  sample  and 
average it  with  our  initial  matrix to  get  a  rank  two  matrix  for 
S.) In  our  theoretical  development of the properties  of the 
maximum-likelihood  procedure, we have  restricted S t o  being 
positive  definite.  This  guarantees  that the R matrix is positive 
definite.  However, even with S being singular, the  Toeplitz 
matrix  constraint  on R normally  produces  a  positive  definite 
answer. We shall not give a  proof  of  this,  but  it  takes  special 
conditions  on  the  vector sample for  the  estimated covariance 
matrix to  be  singular  using either  estimation  procedure. 

Our  comparison  of  the  two  estimation  techniques is done 
using three  different  but  similar  vector  samples.  Each  vector 
sample is eleven points long  and  consists  of  a unit  amplitude 
cosine wave whose  period is eight  sample points long.  Taking 
the sampling  period to  be 0.005 s, the foldover  frequency is 
100 Hz, and  the  frequency  of  the  cosine wave is 25 Hz. The 
three cases differ  in  the beginning  phase  of the cosine wave. 
The first case starts  the  cosine  function  at 45', the second  at 
90°,  and  the  third  at 135'.  Fig. 1  shows  the cosine wave. The 
points  from  1  to  11  go  into  the  first case  vector, the  points 
from  2 to  12,  the  second,  and  the  points  from  3 to  13,  the 
third. To each  of  these  cosine  vectors, we have  added the 
same  vector  (0.000562,  -0.019127,  0.007377,  -0.000149, 
-0.007479,  -0.013960,  0.003510,  0.012380,  0.006979, 
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Fig. 1. Sampled  cosine  function  used in the examples. 

0.003092, 0.010053).  This  vector was generated  from  eleven 
randomly  chosen  numbers  from  a  zero-mean  Gaussian  process 
with  variance  0.0001. Thus our three cases have the  same noise 
and  differ  only  in  the  beginning  phase of the cosine. We note 
that  the average power of a  unit  amplitude  sinusoid  is  0.5  and 
thus  the average power of our sinusoid in white  noise  process 
is 0.500 1. 

Before  discussing the examples, we review how  the Burg 
technique  estimates  the  first  two  lag  values  of the autocorrela- 
tion  function, R(0)  and  R(1). R(0)  is estimated  by the sample 
average power. R ( l )  is then  estimated by first estimating the 
first reflection  coefficient C( 1)  and  then  using R( 1) = - C( 1) 
R(0) .  For  our  vector  sample, x,, n = 1 t o  1 1, the Burg formula 
for C( 1) is 

10  10 

~ ( 1 )  s - 2  (xnxn+l)/ (X; + x;+1)- 
n =1 n=i 

If the  summation were from n = 1 to  8, that is, over one period 
of the cosine, then if  we disregarded the  added noise  vector, 
the  numerator would be -5.656856  and  the  denominator 
would be 8.0. The  C(1) would be -0.707107, which is pre- 
cisely the  correct value. As we shall see, summing  in the  two 
extra  terms will cause  an error in the estimate of C( 1) and  lead 
to line  splitting. 

45' Case 

The f i t  important  feature of this  vector  sample  (points  1 to  
11  of Fig. 1) is that  the average  square  value  of the cosine 
alone  over the eleven  samples is 5/11 = 0.454545. With the 
noise added,  the  sample average is  0.457055.  This  low  sample 
average for  the power is due to  starting at 45'. One period  of 
the cosine wave is eight  samples  and the  three  extra samples 
are 0.707107, 0.000000, and  -0.707107.  The average  square 
value of these  three  extra samples  pulls the average  down. The 
second  important  fact is that  in  the  calculation of  C(1), if we 
again neglect the low-level white  noise, the n = 9 and n = 10 
terms add  zero to  the numerator, while they  add  1.000000  to 
the  denominator.  Thus  our  estimate for  C(1) would  be 
-0.628540  instead of -0.707107.  Thisvalue is too positive  and 
forces the estimate to  put  more power into higher  frequencies 
than  it  should. Fig. 2 shows the  maximumentropy  spectrum 
corresponding to  the  autocorrelation values out  to R( 10) as 
estimated  by the Burg technique.  The Burg technique has dis- 
covered that  the  time series is highly  predictable,  but  because 
it  did not get the correct  value  for C( l),  it  ended up estimating 
multiple lines to  account  for the high  predictability.  It  should 
be noted  that  once  the Burg technique has  decided on a  value 
for C( l), this value is unchanged as the higher order  reflection 
coefficients  are  estimated.  Thus  although the higher order 
estimates  are  dependent on  the estimated  value of C(1), they 
cannot change C( 1). Also, since there is a  strict one-to-ne 
correspondence  between  normalized  power  spectra  and se- 
quences  of  reflection  coefficients, the estimation  of the higher 
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Fig. 2. 45' case, Burg technique maximumentropy spectrum. 
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Fig. 7 .  Distribution function  of  spectrum in Fig. 6 .  

order  coefficients  cannot be influenced in  such  a way as to  
cover up an  error  in  a  lower  order  coefficient. Looking  again 
at Fig.  2, the maximum  power  spectral  line  has  a  frequency  of 
25.870376 Hz  which is not a  particularly  accurate  estimate of 
the  true  frequency.  Two  other lines of  considerable  power 
have  been split off to  u e r  frequencies. 

Fig. 3  shows the  tenth-order  maximumentropy  spectrum 
corresponding to  the  maximum-Flihood estimate of the  auto- 
correlation  function  for  this 45 case. Here we have one over- 
whelming  peak at  24.948942 Hz,  an error of  5 parts  in  10 000. 
In  addition, the estimate  for  the  total average power is 
0.503475! Remembering that  the sample average  was 
0.457055,  how  can the maximum-likelihood  procedure  get  an 
estimate  that is so much  closer to  the "correct"  answer  of 
0.5001? To try to  find  an  explanation  of  this  phenomena,  one 
should  ponder the Unknown  Scale  Factor Case of Section IV. 

90' Case 

This  vector  sample  (points  2 to  12 of Fig. 1) has the cosine 
wave positioned so that  the  sample averaged  square  value  has 
the correct  value  of 0.5. With the noise added,  the sample 
average is 0.499437. . More important, however, is the  fact 
that  the Burg technique  calculation  of C( 1) is correct  for  this 
positioning.  Looking at Fig. 4, we see that  there is no line 
splitting  for  this  vector  and  the  major  peak  frequency is an 
accurate  25.001776 Hz. 

Fig. 5 is the  spectrum  for  the maximum-likelihood  estimated 
autocorrelation  function.  The  peak  frequency  of  24.93  1945 
Hz is not as good as the Burg technique answer, but  one would 
believe that  it is in  the range  of  values  produced  by  random- 
noise  vectors. The power estimate is 0.50053 1, which is slightly 
closer to  0.5001  than  the  sample average  power. The  two 
techniques  seem to  be  similar in performance  for  this  vector 
sample. Even the  two  maximumentropy  spectra are similar. 

Fig. 8. 135' case,  maximum-likelihood maximumatropy spectrum. 

Fig. 9. Distribution function of spectrum  in Fig. 8. 

135' Case 

The  three  extra samples of the cosine (points  3 to   13 of Fig. 
1)  are  -0.707107, -1.000000, and  -0.707107.  Thus  the 
sample average  of the cosine wave is 6/11 = 0.545455. With 
the noise  added,  the  sample  average is 0.542202.  Again,  for 
the cosine wave alone,  the Burg technique  calculation of  C(1) 
has  a  significant error, giving the  too negative  value of 
-0.771389.  This causes too much  power to be  put  into  low 
frequencies.  Indeed, Fig. 6  shows  a  second  major  peak  at 
about  17 Hz with  the  primary  peak  having  a  frequency  of 
24.228206 Hz. Maximum entropy  spectra  such as show  in 
Fig. 6  can be misleading in  estimating  the  power  under  a 
peak. Fig. 7 is the normalized distribution  function of the 
power  density  spectrum  in  Fig.  6.  That is, it is the running 
integral  starting at zero  frequency,  normalized  by  the  total 
power so that  it is read in percent  power.  This  figure  shows 
that  about  35  percent  of  the power is in  the split-off peak 
and 65 percent in the main  peak. The power in the white 
noise is too small to see on  this scale. 

Fig. 8 is the maximum-likelihood  estimated  spectrum. Again, 
there is only  one  overwhelming  peak  whose  frequency is 
24.930899 Hz. Right next  to  it is a  tiny peak but with  a total 
power  much too small to call it  a split-off peak. It is interest- 
ing that  the  maximum-entropy  assumption  and  the  autocorre- 
lation  function values call for  a peak to  occur  that close to  
the main  peak.  However, in Fig. 4  one can  see the indication 
of a  budding  peak on  the  right side  of the main  peak.  The 
maximum-likelihood  estimate for  the  total  power is 0.497147. 
Again, this  estimate is remarkable in the face of a  sample  aver- 
aged estimate  of  0.542202  for  the  total  power. 

Fig. 9 is the  distribution  function of the  spectrum  in Fig. 8. 
It simply  shows that  almost all of the power is in  the 25-Hz 
line. 

To sum up  the results of this comparison,  the  maximum- 
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likelihood estimated covariance matrix gave us  an  estimated 
autocorrelation  function  for  our sinusoid in white-noise process 
that is always  equal to and usually much  superior to  the Burg 
technique estimate. Regardless of the beginning phase of the 
cosine, the maximum-likelihood technique gave us a single 
peak that engulfed the rest of the  spectrum, a center  frequency 
estimate  within 7 parts per 10 000, and  a  power estimate well 
within  a  1-percent  error. Considering that  the Burg technique 
has become the  standard with which to compare new methods, 
the performance of the maximum-likelihood estimation pro- 
cedure is indeed impressive. 

VIII. SUMMARY AND CONCLUSIONS 
The  approach of maximum-likelihood estimation of a struc- 

tured covariance matrix  is  both theoretically sound  and com- 
putationally feasible. In evaluating the  procedure with  simu- 
lated  random  vector  data  from a stationary  time series, we 
have found  that  the  maximumentropy  spectra  obtained  from 
the  autocorrelation  functions estimated  by this generalization 
of the Burg technique to be consistantly better and often  much 
better  than  those  obtained by the usual Burg technique. In 
particular, there is no evidence of line splitting  with the 
maximum-likelihood procedure. 
As discussed in the  Introduction,  the Burg technique and 

maximum-entropy spectral analysis are natural partners in 
doing spectral estimation of  Single-ChaMel time series. How- 
ever, the use of the new technique to estimate  multichannel 
and  multidimensional covariance matrices,  perhaps  followed 
by  maximum-entropy spectral analysis, is of particular impor- 
tance since there  is  only a moderately successful generalization 
of the Burg technique to  the multichannel case and  none at 
all to  the multidimensional case. Multidimensional spectral 

estimation  from  data originating from  an array of sensors lying 
in a stationary field of propagating  plane waves is one of the 
most important challenges today. This new estimation  tech- 
nique provides a solution to  the problem of analyzing the array 
data  into a positive definite covariance matrix,  from which 
one can then  estimate  the  spectrum via the  maximumentropy 
method. Not having a  good data analysis method  for getting 
the multidimensional  covariance matrix has  been  a drawback 
to the usefulness of high-resolution  multidimensional spectral 
analysis as well as  limiting its effectiveness for real data. 

There is a  great amount of research and testing to be done 
on  this new estimation  technique.  Conditions  for  the unique- 
ness of the  solution  to  the variational  principle  should be 
developed, especially for  the general class of Toeplitz  struc- 
tured matrices. The  properties of the iterative  algorithm are 
mostly unknown and large improvements  in  its overall per- 
formance are  likely. From a theoretical  point of view, it appears 
that  this maximum-likelihood procedure can be  strongly  re- 
lated to general maximum-entropy theory as preached  by 
Edwin T. Jaynes. In particular, in a  private  correspondence, 
John E. Shore  has shown that  this maximum-likelihood  esti- 
mation  theory is interrelated to his work  with minimum cross- 
entropy (31.  The possibility of uniting these two  estimation 
theories is indeed exciting. 
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