Closed Expressions for Finite Transformations

Daniel Lee Wenger

We find a solution to the following simple problem. Given an n x n matrix heta

where the $heta_{ij}$ are complex numbers and where heta is diagonalizable, then find a closed expression for the exponentiated form $\mu=e^{i heta}$ where

$$\mu = e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \dots$$
 (2)

By the Cayley-Hamilton theorm, the nxn matrix θ satisfies an nth degree polynomial equation. Consequently, μ may be expressed in terms of a power series of degree n-1 in θ

$$\mu = \sum_{i=0}^{n-1} a_i \theta^i \tag{3}$$

The a_i are functions of the invariants of heta and the problem is to find these functions.

Now define the quantity

$$T_i \equiv tr(\mu\theta^i) \tag{4}$$

The trace is invarient under the transformation that diagonalizes θ and μ . Let the diagonal form of θ be $\overline{\theta}$ and the diagonal form of μ be $\overline{\mu}$, then

$$T_i = tr(\overline{\mu}\overline{\theta}^i) \tag{5}$$

Also, using (3) and (4) we have

$$T_{i} = \sum_{j=0}^{n-1} a_{j} tr\left(\theta^{i+j}\right) = \sum_{j=0}^{n-1} a_{j} tr\left(\overline{\theta}^{i+j}\right)$$
 (6)

Let

$$A_{ij} \equiv tr(\overline{\theta}^{i+j}) \qquad i, j = 0, 1, 2...n - 1 \tag{7}$$

Then

$$T_i = \sum_{j=0}^{n-1} A_{ij} a_j \quad i = 0, 1, 2...n - 1$$
 (8)

is a linear system of equations for a_j . Assuming that the determinant $|A| \neq 0$, the inverse to A exists and we have

$$a_i = \sum_{j=0}^{n-1} A_{ij}^{-1} T_j \tag{9}$$

As an example we find the 2 x 2 representation of SU₂. θ is hermitian and traceless. Consequently, $\overline{\theta}$ has the form

$$\overline{\theta} = \begin{pmatrix} \phi / & 0 \\ 2 & 0 \\ 0 & -\phi / 2 \end{pmatrix} \tag{10}$$

where ϕ is real, $\overline{\mu}$ has the form

$$\overline{\mu} = \begin{pmatrix} e^{i\phi/2} & 0\\ 0 & e^{-i\phi/2} \end{pmatrix} \tag{11}$$

Computing T_i and A_{ij} we get

$$T_0 = 2\cos\frac{\phi}{2} \qquad T_1 = \frac{\phi}{2}\sin\frac{\phi}{2} \tag{12}$$

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \phi^2 / 2 \end{pmatrix} \tag{13}$$

Inverting A we get

$$A^{-1} = \begin{pmatrix} 1/2 & 0\\ 0 & 2/\phi^2 \end{pmatrix} \tag{14}$$

and solving for a_i from (9)

$$a_0 = \cos\frac{\phi}{2} \qquad a_1 = \frac{i}{\phi/2} \sin\frac{\phi}{2} \tag{15}$$

we arrive at the familiar form

$$e^{i\theta} = \cos\frac{\phi}{2} + \frac{i}{\phi/2}\sin\frac{\phi}{2}\theta\tag{16}$$

where ϕ is the angle of rotation.