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We find a solution to the following simple problem. Given an n x n matrix θ
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where the θij  are complex numbers and where θ  is diagonalizable, then find a closed

expression for the exponentiated form µ θ= ei
where
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By the Cayley-Hamilton theorm, the  n x n matrix θ  satisfies an nth degree polynomial

equation. Consequently, µ  may be expressed in terms of a power series of degree n-1 in
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The ai  are functions of the invariants of θ  and the problem is to find these functions.

Now define the quantity
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The trace is invarient under the transformation that diagonalizes θ  and µ . Let the

diagonal form of θ  be θ  and the diagonal form of µ  be µ , then
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Also, using (3) and (4) we have

T a tr a tri j
i j

j

n

j
i j

j

n

= ( ) = ( )+

=

−
+

=

−

∑ ∑θ θ
0

1

0

1

(6)

Let
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is a linear system of equations for aj . Assuming that the determinant A ≠ 0, the

inverse to A exists and we have
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As an example we find the 2 x 2 representation of SU2. θ  is hermitian and traceless.

Consequently, θ  has the form
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where φ  is real, µ  has the form
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Computing Ti  and Aij  we get
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Inverting A we get
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and solving for ai  from (9)
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we arrive at the familiar form
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where φ  is the angle of rotation.


